首页> 外文学位 >A dynamical systems analysis of vortex pinch-off.
【24h】

A dynamical systems analysis of vortex pinch-off.

机译:涡旋夹断的动力学系统分析。

获取原文
获取原文并翻译 | 示例

摘要

Vortex rings constitute the main structure in the wakes of a wide class of swimming and flying animals, as well as in cardiac flows and in the jets generated by some moss and fungi. However, there is a physical limit, determined by an energy maximization principle called the Kelvin-Benjamin principle, to the size that axisymmetric vortex rings can achieve. The existence of this limit is known to lead to the separation of a growing vortex ring from the shear layer feeding it, a process known as `vortex pinch-off', and characterized by the dimensionless vortex formation number. The goal of this thesis is to improve our understanding of vortex pinch-off as it relates to biological propulsion, and to provide future researchers with tools to assist in identifying and predicting pinch-off in biological flows.;To this end, we introduce a method for identifying pinch-off in starting jets using the Lagrangian coherent structures in the flow, and apply this criterion to an experimentally-generated starting jet. Since most naturally-occurring vortex rings are not circular, we extend the definition of the vortex formation number to include non-axisymmetric vortex rings, and find that the formation number for moderately non-axisymmetric vortices is similar to that of circular vortex rings. This suggests that naturally-occurring vortex rings may be modeled as axisymmetric vortex rings. Therefore, we consider the perturbation response of the Norbury family of axisymmetric vortex rings. This family is chosen to model vortex rings of increasing thickness and circulation, and their response to prolate shape perturbations is simulated using contour dynamics. Finally, the response of more realistic models for vortex rings, constructed from experimental data using nested contours, to perturbations which resemble those encountered by forming vortices more closely, is simulated using contour dynamics. In both families of models, a change in response analogous to pinch-off is found as members of the family with progressively thicker cores are considered. We posit that this analogy may be exploited to understand and predict pinch-off in complex biological flows, where current methods are not applicable in practice, and criteria based on the properties of vortex rings alone are necessary.
机译:涡流环是各种游泳和飞行动物的尾流,心脏气流以及某些苔藓和真菌产生的喷射流的主要结构。但是,存在一个物理限制,该限制由称为Kelvin-Benjamin原理的能量最大化原理确定,可以达到轴对称涡旋环可以达到的尺寸。已知存在该极限会导致不断增长的涡流环​​与向其供料的剪切层分离,这一过程称为“涡流夹断”,其特征在于无量纲的涡流形成数。本文的目的是增进我们对与生物推进有关的涡旋夹断的理解,并为未来的研究人员提供工具,以帮助识别和预测生物流中的夹断。用流中的拉格朗日相干结构识别启动射流夹断的方法,并将此标准应用于实验生成的启动射流。由于大多数自然发生的涡旋环都不是圆形的,因此我们将涡旋形成数的定义扩展到包括非轴对称涡旋环,并且发现中等非轴对称涡旋的形成数与圆形涡旋环的相似。这表明自然发生的旋涡环可以建模为轴对称旋涡环。因此,我们考虑了轴对称涡环的Norbury族的摄动响应。选择该族来模拟厚度和循环不断增加的涡流环,并使用轮廓动力学模拟它们对扁形形状扰动的响应。最后,利用轮廓动力学模拟了更真实的涡流环模型的响应,该模型是使用嵌套轮廓从实验数据构建的,类似于通过更紧密地形成涡流而遇到的扰动。在这两个模型家族中,都发现了类似于夹断的响应变化,因为该家族的成员考虑了越来越厚的核心。我们假设可以利用这种类比来理解和预测复杂生物流中的夹断,而当前的方法在实践中并不适用,仅基于涡环特性的标准是必要的。

著录项

  • 作者

    O'Farrell, Clara.;

  • 作者单位

    California Institute of Technology.;

  • 授予单位 California Institute of Technology.;
  • 学科 Aerospace engineering.;Applied mathematics.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 210 p.
  • 总页数 210
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号