首页> 外文学位 >Genome-enabled informatics and biochemical genetics in marine cyanobacteria.
【24h】

Genome-enabled informatics and biochemical genetics in marine cyanobacteria.

机译:海洋蓝细菌中具有基因组功能的信息学和生化遗传学。

获取原文
获取原文并翻译 | 示例

摘要

Cyanobacteria are oxygenic photosynthetic bacteria that have shaped the chemical and biological evolution of Earth. They are one of the largest groups of bacteria and the oldest known fossils on Earth, as well as significant players in global carbon, nitrogen and oxygen cycles. Despite the progress in cyanobacterial physiology, ecology and biogeochemistry in the past decades, the molecular evolution of cyanobacteria, particularly the origin and evolution of oxygenic photosynthesis, has not been well studied. This is partially due to a lack of sufficient sequence information across all photosynthetic lineages. Molecular technologies have only been applied to a few available genes in studying the acclimation of oceanic cyanobacteria to environmental stimuli. The availability of complete genome sequences of cyanobacteria now provides the first opportunity to study the origin and evolution of these oxygenic photoautotrophs, as well as their adaptation to the contemporary oligotrophic ocean. In the work presented here, I exploit the full power of this rapidly accumulating information to (1) demonstrate the mode and pattern of genome evolution in cyanobacteria and its implications to oxygenic photosynthesis; (2) examine the effects of iron limitation on the regulation of photosynthetic and nitrogen fixation genes in Trichodesmium erythraeum IMS101.; I demonstrate phylogenetic incongruence among 682 orthologous protein families from 13 genomes of cyanobacteria. I identify a core set of 321 genes that share similar evolutionary histories, and hence establish a foundation for reconstructing robust organismal phylogeny. The core set is extremely conservative in protein variability, and is comprised largely of informational genes as well as a number of genes encoding core proteins in photosynthetic pathway. The finding is consistent with the complexity hypothesis, that is, genes coding for large complex systems that have more macromolecular interactions are less subject to horizontal transfers than genes coding for small assemblies of a few gene products (Jain et al., 1999). I test this hypothesis by analyzing the correspondence in genetic distance matrices between all possible pair-wise combinations of 82 photosynthetic genes in 10 species of cyanobacteria. I discover significant correlations between proteins linked in a conserved gene order, and between structurally identified interacting protein scaffolds that coordinate the binding of cofactors involved in photosynthetic electron transport. The tempo of evolution of genes encoding core metabolic processes in the photosynthetic apparatus is highly constrained by protein interactions and this acts as an internal selection pressure governing the conservation of clusters of photosynthetic genes in oxygenic prokaryotic photoautotrophs. In effect, these core proteins have become "frozen metabolic accidents", that is, the metabolic functions the proteins mediate are not only energetically inefficient, but also apparently cannot be significantly altered via selection. Finally, to examine how the photosynthesis and nitrogen fixation machineries acclimate to iron availability, I perform iron deprivation and reconstitution experiments using axenic cultures of Trichodesmium erythraeum IMS101. I show that the major metalloprotein encoding genes in both photosynthesis and nitrogen fixation machinery are transcriptionally regulated by Fe availability. Both physiological and molecular responses suggest that nitrogen fixation is much more sensitive to Fe limitation than photosynthesis.
机译:蓝细菌是决定了地球化学和生物进化的氧合光合细菌。它们是地球上最大的细菌群和最古老的化石之一,也是全球碳,氮和氧循环的重要参与者。尽管在过去的几十年中,蓝细菌的生理学,生态学和生物地球化学取得了进步,但对蓝细菌的分子进化,特别是氧光合作用的起源和进化,还没有进行充分的研究。部分原因是所有光合作用谱系都缺乏足够的序列信息。在研究海洋蓝细菌对环境刺激的适应性研究中,分子技术仅应用于少数可用的基因。蓝细菌完整基因组序列的可利用性现在提供了第一个机会来研究这些含氧光合自养生物的起源和进化,以及它们对当代贫营养化海洋的适应性。在本文介绍的工作中,我充分利用了这种迅速积累的信息的全部力量,以:(1)展示了蓝细菌基因组进化的模式和模式及其对氧光合作用的影响; (2)研究铁限制对红球毛IMSIMS101中光合和固氮基因调控的影响。我展示了来自13个蓝细菌基因组的682个直系同源蛋白家族之间的系统发育不一致。我确定了一组具有相似进化史的321个基因的核心,从而为重建强大的系统发育奠定了基础。核心集在蛋白质变异性方面极为保守,并且主要由信息基因以及许多在光合作用途径中编码核心蛋白质的基因组成。这一发现与复杂性假说是一致的,也就是说,编码具有较大分子相互作用的大型复杂系统的基因比编码少量基因产物的小装配体的基因受水平转移的影响要小(Jain等,1999)。我通过分析10种蓝细菌中82个光合基因的所有可能的成对组合之间的遗传距离矩阵中的对应关系来检验该假设。我发现以保守的基因顺序连接的蛋白质之间,以及在结构上确定的相互作用蛋白质支架之间的显着相关性,这些蛋白质支架协调参与光合作用电子转运的辅因子的结合。光合作用中编码核心代谢过程的基因的进化速度受到蛋白质相互作用的高度限制,这是内部选择压力,控制着氧合原核生物自养生物中光合基因簇的保守性。实际上,这些核心蛋白已成为“冻结的代谢事故”,也就是说,蛋白介导的代谢功能不仅在能量上无效,而且显然不能通过选择显着改变。最后,为了检查光合作用和固氮机制如何适应铁的有效性,我使用红霉菌IMS101的未成熟培养物进行了铁缺乏和重组实验。我表明在光合作用和固氮机制中主要的金属蛋白编码基因受铁可用性的转录调控。生理和分子反应都表明固氮比光合作用对铁的限制更为敏感。

著录项

  • 作者

    Shi, Tuo.;

  • 作者单位

    Rutgers The State University of New Jersey - New Brunswick.;

  • 授予单位 Rutgers The State University of New Jersey - New Brunswick.;
  • 学科 Biology Oceanography.; Biology Bioinformatics.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 144 p.
  • 总页数 144
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 海洋生物;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号