首页> 外文学位 >Theoretical and experimental investigation of hydrogen production by gasification of biomass.
【24h】

Theoretical and experimental investigation of hydrogen production by gasification of biomass.

机译:通过生物质气化生产氢气的理论和实验研究。

获取原文
获取原文并翻译 | 示例

摘要

A detailed theoretical and experimental investigation of hydrogen production by thermochemical gasification of biomass was conducted. The thermodynamics of biomass gasification was first studied to determine the hydrogen yield at equilibrium. The gasification process is characterized by a number of endothermic and exothermic reactions. A combination of these reactions enables internal energy transfer, and therefore improved process efficiency. The maximum hydrogen yield is limited by thermodynamic equilibrium. One solution to this problem is to remove one of the co-products (CO2) that governs the equilibrium hydrogen yield. In recent times, sorbents (such as calcium oxide) have been used for CO2 removal from fossil fuel exhaust. The same principle was applied here to drive the reactions in favor of hydrogen. In the process the sorbent gets saturated and has to be regenerated for further use.; Process simulations were conducted using an ASPEN simulator with the end objective of determining the hydrogen yield in presence of a CO2 sorbent. Ethanol was used as the model biomass compound and calcium oxide was the representative sorbent. The simulations showed 19% increase in hydrogen yield and about 50% reduction in product gas CO2 while using the sorbent. The hydrogen yield in the presence of sorbent at a gasification temperature of 600°C was comparable to the hydrogen yield without the sorbent at 750°C. Hence there is a potential to reduce the gasifier operating temperature by about 100-150°C while still getting the same amount of hydrogen. The in-situ heat transfer (CO2 absorption is exothermic) reduced the gasifier heat duty by almost 42%. Based on the encouraging results obtained from simulations, experiments were conducted using Southern pine bark as the model biomass and calcium oxide as the representative sorbent. Hydrogen yield increased substantially (from 320 ml/g to 719 ml/g) by using sorbents at gasification temperature as low as 500°C. The product gas had much less tars and particulate matter as compared to conventional gasification. The carbon conversion efficiency (a way of quantifying the effectiveness of gasification) increased from a mere 23% to 63% while using sorbent.; Sorbent enhanced biomass gasification has the potential to produce a hydrogen rich, CO2 free and possibly tar free gas that can be sent to a fuel cell or gas turbine with minimal cleaning. Hence there is a potential to reduce the equipment needed for hydrogen production. This will lead to reduced capital and operating costs. Hence sorbent enhanced biomass gasification has the potential to become a cost effective technology for producing renewable hydrogen.
机译:对生物质进行热化学气化制氢的详细理论和实验研究。首先研究了生物质气化的热力学,以确定平衡时的氢气产量。气化过程的特征在于许多吸热和放热反应。这些反应的结合使内部能量转移成为可能,因此提高了工艺效率。最大氢产量受热力学平衡限制。解决该问题的一种方法是除去控制平衡氢产率的副产物(CO2)之一。近年来,吸附剂(例如氧化钙)已用于从化石燃料废气中去除CO2。此处应用了相同的原理来推动反应朝着氢方向发展。在此过程中,吸附剂饱和,必须进行再生才能进一步使用。使用ASPEN模拟器进行过程模拟,其最终目的是在存在CO2吸附剂的情况下确定氢的收率。乙醇用作模型生物质化合物,氧化钙是代表性的吸附剂。模拟结果表明,使用吸附剂时,氢气产率提高了19%,产物气体CO2降低了约50%。在600℃的气化温度下,在存在吸附剂的情况下的氢气产率与在750℃下没有吸附剂的情况下的氢气产率相当。因此,有可能将气化炉的工作温度降低约100-150°C,同时仍获得相同量的氢气。原位传热(CO2吸收放热)使气化炉的热负荷降低了近42%。基于从模拟中获得的令人鼓舞的结果,以南方松树皮为模型生物质,以氧化钙为代表吸附剂进行了实验。通过在低至500°C的气化温度下使用吸附剂,氢的产量显着增加(从320 ml / g增加至719 ml / g)。与常规气化相比,产物气的焦油和颗粒物少得多。使用吸附剂时,碳转化效率(一种量化气化效果的方式)从仅23%提高到63%。吸收剂增强的生物质气化具有产生富含氢,无CO2且可能不含焦油的气体的潜力,该气体可以在不进行最少清洁的情况下被送入燃料电池或燃气轮机。因此,有可能减少制氢所需的设备。这将减少资本和运营成本。因此,吸附剂增强的生物质气化技术有潜力成为生产可再生氢的一种经济有效的技术。

著录项

  • 作者

    Mahishi, Madhukar.;

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 179 p.
  • 总页数 179
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号