首页> 外文学位 >Channel state information in multiple antenna systems.
【24h】

Channel state information in multiple antenna systems.

机译:多天线系统中的信道状态信息。

获取原文
获取原文并翻译 | 示例

摘要

The information-theoretic foundation of multiple-input multiple-output (MIMO) systems was laid out by Foschini, Gans, and Telatar [21, 74], who have showed that multiple antennas at the transmitter and the receiver provide significant capacity enhancement over single-antenna systems. Spatial diversity provided by multiple antennas enhances the throughput and reliability of wireless communications [83]. To exploit the enhanced spectral efficiency, space-time coding has been designed to achieve a specific tradeoff between diversity and multiplexing [23,72,73]. Most work on space-time coding deals with the case where no knowledge of the forward channel is available to the transmitter.; In a MIMO system, if the transmitter has perfect knowledge of the underlying channel state information (CSI), power allocation to the right singular subspace of the channel matrix can be used to achieve a higher channel capacity compared to transmission without CSI [27]. When reciprocity of the wireless channel does not hold, as in frequency-division duplex (FDD), perfect CSI at the transmitter requires a high-rate feedback channel, which may not be practical, particularly in fast time-varying environments. Thus, the identification and utilization of partial CSI at the transmitter are important issues.; Much work has been devoted to identifying the benefits of partial CSI at the transmitter and the design of optimal transmission schemes to exploit it. For example, when only the statistics of the channel state are available at the transmitter, an optimal transmit covariance matrix can be designed to achieve higher capacity than transmission without any CSI [76, 85, 86]. Techniques for attaining partial CSI have also been proposed [44, 53, 54].; This thesis is focused on partial CSI acquisition and utilization techniques for MIMO channels. The nature of the CSI feedback problem is a quantization of the underlying matrix channels. We propose a feedback algorithm for tracking the dominant channel subspaces for MIMO systems in a continuously time-varying environment. We exploit the correlation between channel states of adjacent time instants and quantize the variation of channel states. Specifically, we model a subspace as one point in a Grassmann manifold, treat the variations in principal right singular subspaces of the channel matrices as a piecewise-geodesic process in the Grassmann manifold, and quantize the velocity matrix of the geodesic.; As a demonstration of optimal transmitter design given partial CSI feedback, we design a complexity-constrained MIMO OFDM system where the transmitter has knowledge of channel correlations. The transmitter is constrained to perform at most one inverse Discrete Fourier Transform (IDFT) per OFDM symbol on the average. We show that in the multiple input, single output case, time domain beamforming can be used to do two-dimensional eigen-beamforming. For the MIMO case, we derive design criteria for the transmitter beamforming and receiver combining weighting vectors and show some suboptimal solutions.; Most previous papers on CSI feedback did not consider uncertainties in the feedback process, such as unexpected delay or error in the feedback channel. Such uncertainties exist in reality and ignoring them results in suboptimal algorithms. We consider channel mean-feedback with an unknown delay and propose a broadcast approach that is able to adapt to the quality of the feedback.; Having considered CSI feedback problems where the receiver tries to convey its attained CSI to the transmitter, we turn to a different problem; namely, noncoherent coding design for fast fading channels, where the receiver does not have reliable CSI. Unitary space-time codes [31,82] and training based schemes [16] have been proposed historically. We propose a data-dependent superimposed training scheme to improve the performance of training based codes. The transmitter is equipped with multiple training sequences and dynamically selects a
机译:Foschini,Gans和Telatar [21,74]奠定了多输入多输出(MIMO)系统的信息理论基础,他们表明,发射器和接收器上的多个天线比单个天线具有明显的容量增强。 -天线系统。多个天线提供的空间分集提高了无线通信的吞吐量和可靠性[83]。为了利用增强的频谱效率,已设计了时空编码,以实现分集和复用之间的特定权衡[23,72,73]。时空编码的大多数工作是处理发射机不了解前向信道的情况。在MIMO系统中,如果发射机完全了解基础信道状态信息(CSI),则与不使用CSI进行传输相比,可以将功率分配给信道矩阵的正确奇异子空间来实现更高的信道容量[27]。当无线信道的互易性不成立时(如在频分双工(FDD)中),发射机处的完美CSI需要高速率的反馈信道,这可能不切实际,特别是在快速时变环境中。因此,在发射机处识别和利用部分CSI是重要的问题。已经进行了许多工作来确定发射机处部分CSI的好处以及设计最佳CSI的传输方案。例如,当在发射机处仅信道状态的统计数据可用时,可以设计最佳的传输协方差矩阵,以实现比没有任何CSI的传输更高的容量[76,85,86]。还已经提出了用于获得部分CSI的技术[44、53、54]。本文主要研究MIMO信道的部分CSI获取和利用技术。 CSI反馈问题的性质是对基础矩阵通道的量化。我们提出了一种反馈算法,用于在连续时变环境中跟踪MIMO系统的主要信道子空间。我们利用相邻时刻的信道状态之间的相关性,并量化信道状态的变化。具体来说,我们将一个子空间建模为格拉斯曼流形中的一个点,将通道矩阵的主右奇异子空间的变化视为格拉斯曼流形中的分段测地过程,并对测地线的速度矩阵进行量化。作为给出部分CSI反馈的最佳发射机设计的证明,我们设计了一个复杂度受限制的MIMO OFDM系统,其中发射机具有信道相关性的知识。平均而言,发射机必须限制每个OFDM符号最多执行一个逆离散傅立叶变换(IDFT)。我们表明,在多输入,单输出的情况下,时域波束成形可用于进行二维特征波束成形。对于MIMO情况,我们推导了发射机波束成形和接收机结合加权矢量的设计准则,并给出了一些次优的解决方案。以前有关CSI反馈的大多数论文都没有考虑反馈过程中的不确定性,例如反馈通道中的意外延迟或错误。现实中存在此类不确定性,而忽略这些不确定性则会导致算法不理想。我们考虑具有未知延迟的信道均值反馈,并提出一种能够适应反馈质量的广播方法。在考虑了CSI反馈问题后,接收机试图将其获得的CSI传达给发射机,我们转向另一个问题。即,在接收机没有可靠CSI的情况下,用于快速衰落信道的非相干编码设计。历史上已经提出了单一的时空编码[31,82]和基于训练的方案[16]。我们提出了一种基于数据的叠加训练方案,以提高基于训练的代码的性能。发射机配备了多个训练序列,可以动态选择一个

著录项

  • 作者

    Yang, Jingnong.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 109 p.
  • 总页数 109
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号