首页> 外文学位 >A modeling framework for the synthesis of carbon nanotubes by RF plasma technology.
【24h】

A modeling framework for the synthesis of carbon nanotubes by RF plasma technology.

机译:通过射频等离子体技术合成碳纳米管的建模框架。

获取原文
获取原文并翻译 | 示例

摘要

The novel, cost and energy-efficient synthesis of carbon nanotubes (CNTs) by radio-frequency (RF) induction thermal plasma is a promising process for large scale production of CNTs for industrial and commercial applications. Techniques and conditions for producing larger quantities of CNTs have mainly depended on trial-and-error empirical variations of several operating parameters. Therefore, a detailed kinetic mechanism for CNT production in numerical simulations of an RF plasma system is required for understanding the process and identifying the parameters that mainly influence nanotube production. Such a model could also be used to enhance and optimize the design of synthesis systems.;In this work, a two-dimensional axisymmetric model was constructed for a RF processing system for the production of CNTs. The plasma field was solved using a computational fluid dynamics (CFD) Eulerian frame of reference. The interactions between the plasma and injected feed particles were considered using momentum, heat and mass transfer source terms in the plasma field governing equations. The trajectory and temperature history of the injected particles into the plasma were computed using a Lagrangian method. The effects of plasma gas composition and the raw material feed rate in the system on the plasma thermo-fluid fields were studied. It was found that when 100% He sheath gas was employed, compared to an Ar-He mixture, the evaporation rate of the injected feedstock particles in the plasma increased due to the higher thermal conductivity of the He gas. Based on the raw material feed rate analysis, a higher loading rate of feedstock reduces down the plasma temperature along the injection zone and increases the average evaporation time of the feedstock in the plasma.;A chemistry model for the formation of CNTs from feedstock material was implemented into an in-house two-dimensional axisymmetric parallelized CFD code. 36 elementary chemical reactions representing the formation of CNTs were numerically solved in the computational domain parallelized for execution on 64 Central Processing Units (CPUs). It was shown that the reaction rates of key reactions could be adjusted within their uncertainty range to improve the predicted yield of CNTs to within the yield rate reported from the experiments.
机译:通过射频(RF)感应热等离子体进行碳纳米管(CNT)的新颖,低成本和高能效合成,是大规模生产用于工业和商业应用的CNT的有前途的工艺。生产大量CNT的技术和条件主要取决于几个操作参数的反复试验经验变化。因此,需要RF等离子体系统的数值模拟中用于生产CNT的详细动力学机制,以了解该过程并确定主要影响纳米管生产的参数。这样的模型还可以用于增强和优化合成系统的设计。在这项工作中,为用于生产CNT的RF处理系统构建了二维轴对称模型。等离子体场使用计算流体力学(CFD)欧拉参考框架求解。在等离子场控制方程中,使用动量,热和传质源项来考虑等离子体与注入的进料颗粒之间的相互作用。使用拉格朗日方法计算注入到等离子体中的粒子的轨迹和温度历史。研究了系统中等离子体气体的组成和原料进料速度对等离子体热流场的影响。发现与Ar-He混合物相比,当使用100%的He鞘气时,由于He气的更高的热导率,等离子体中注入的原料颗粒的蒸发速率增加。根据原料进料速率分析,较高的原料负载率会降低沿注入区的等离子体温度,并增加等离子体中原料的平均蒸发时间。;从原料形成碳纳米管的化学模型为实现为内部二维轴对称并行CFD代码。在并行的计算域中,对代表CNT形成的36种基本化学反应进行了数值求解,以便在64个中央处理器(CPU)上执行。结果表明,可以在关键反应的不确定性范围内调节关键反应的反应速率,以将碳纳米管的预测产率提高到实验报告的产率范围内。

著录项

  • 作者

    Arabzadeh Esfarjani, Sanaz.;

  • 作者单位

    University of Toronto (Canada).;

  • 授予单位 University of Toronto (Canada).;
  • 学科 Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 185 p.
  • 总页数 185
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号