首页> 外文学位 >An investigation of thermal stabilizing additives and interactions between electrolytes and electrodes in lithium ion batteries.
【24h】

An investigation of thermal stabilizing additives and interactions between electrolytes and electrodes in lithium ion batteries.

机译:锂离子电池中热稳定添加剂以及电解质与电极之间相互作用的研究。

获取原文
获取原文并翻译 | 示例

摘要

Capacity loss of lithium ion batteries develop over the period of a few years at room temperature and accelerate at elevated temperatures. It results partly from the electrolyte decomposition and degradation of solid electrolyte interface (SEI) on the surface of electrode materials. Efforts have been made to improve performances of lithium ion batteries based on the role of electrolyte and its interactions with the electrode materials.; Dissociation of LiPF6 is the source of instability of the LIPF6-carbonate based electrolyte. The generated acidic species, PF5, HF and POF3, initiate and catalyzed the decomposition of the electrolyte. A series of Lewis bases were found to stabilize the electrolyte through reversible binding of PF5.; LiCoO2 and LiNi0.8Co0.2O2 cathode particles were also found to stabilize the electrolyte. Investigation of thermal reactions between electrolyte and the surface of cathode particles reveals that residual Li2CO3 on the surface of metal oxides is responsible for their stabilizing ability for the electrolyte. The thermal reactions deposit surface films similar to those observed on the cathode separated from aged lithium ion cells. Addition of Lewis bases to the electrolyte inhibits the growth of surface films on the cathode metal oxides stored with the electrolyte.; Additives were tested in lithium ion batteries and found to prolong the battery lifetime and improve the battery capacity retention after aging at elevated temperature. Comparative analyses of the electrodes from the aged batteries with different additives indicate that our additive inhibit the film buildup on the electrodes.
机译:锂离子电池的容量损失会在室温下发展几年,并在高温下加速。其部分原因是电极材料表面上的电解质分解和固体电解质界面(SEI)的降解。基于电解质的作用及其与电极材料的相互作用,已经努力改善锂离子电池的性能。 LiPF 6的解离是基于LIPF 6的碳酸盐电解质不稳定的原因。产生的酸性物质PF5,HF和POF3引发并催化了电解质的分解。发现一系列路易斯碱通过可逆的PF5结合来稳定电解质。还发现LiCoO2和LiNi0.8Co0.2O2阴极颗粒可稳定电解质。对电解质与阴极颗粒表面之间的热反应的研究表明,金属氧化物表面上残留的Li2CO3负责其对电解质的稳定能力。热反应沉积的表面膜类似于在阴极上观察到的与老化的锂离子电池分离的表面膜。在电解质中添加路易斯碱会抑制与电解质一起储存的阴极金属氧化物表面膜的生长。添加剂已在锂离子电池中进行了测试,发现可延长电池寿命并提高高温老化后的电池容量保持率。对使用不同添加剂的老化电池中的电极进行的比较分析表明,我们的添加剂可抑制膜在电极上的堆积。

著录项

  • 作者

    Li, Wentao.;

  • 作者单位

    University of Rhode Island.;

  • 授予单位 University of Rhode Island.;
  • 学科 Chemistry Inorganic.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 105 p.
  • 总页数 105
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无机化学;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号