首页> 外文学位 >Investigations of stress responses in Saccharomyces cerevisiae: Transcriptional control and heat shock protein function.
【24h】

Investigations of stress responses in Saccharomyces cerevisiae: Transcriptional control and heat shock protein function.

机译:酿酒酵母中应激反应的研究:转录控制和热休克蛋白的功能。

获取原文
获取原文并翻译 | 示例

摘要

The baker's yeast, Saccharomyces cerevisiae responds to the cytotoxic effects of elevated temperature (37-42°C) by activating transcription of ∼150 genes, termed heat shock genes, collectively required to compensate for the abundance of misfolded and aggregated proteins and various physiological modifications necessary for the cell to survive and grow at heat shock temperatures. An intriguing facet of the yeast heat shock response is the remarkable similarity it shares with the global remodeling that occurs in mammalian cells in response to numerous pathophysiological conditions including cancer and cardiovascular disease and thus provides an ideal model system. I have therefore investigated several novel features of stress signaling, transcriptional regulation, and physiology. Initial work focused on the characterization of SYM1, a novel heat shock gene in yeast which was demonstrated to be required for growth on the nonfermentable carbon source ethanol at elevated temperature, and to be the functional ortholog of the mammalian kidney disease gene, Mpv17. Additional work addressed the role of two proteins, the Akt-related kinase, Sch9, and Sse1, the yeast Hsp110 protein chaperone homolog, in signaling by protein kinase A, establishing Sse1 as a critical negative regulator of this pathway. Furthermore, I have demonstrated a role for Sse1 in biogenesis and stability of the stress-response transcription factor, Msn2; a finding that has been extended to include a select subset of additional high molecular weight proteins, suggesting a more global role for this chaperone in stabilizing the cellular proteome. The final emphasis of my doctoral work has included the finding that celastrol, a compound isolated from the plant family Celasfraceae, a component of traditional Chinese herbal medicine, can activate heat shock transcription factor (Hsf1) in yeast and mammalian cells through an oxidative stress mechanism. Celastrol treatment simultaneously activates both heat shock and oxidative stress response pathways, resulting in increased cytoprotection.
机译:面包酵母啤酒酵母通过激活约150个基因(称为热休克基因)的转录来响应高温(37-42°C)的细胞毒性作用,这些基因共同补偿了错误折叠和聚集的蛋白质的丰度以及各种生理变化细胞在热激温度下生存和生长所必需的。酵母热休克反应的一个有趣方面是,它与哺乳动物细胞对多种病理生理状况(包括癌症和心血管疾病)的反应中发生的整体重塑具有显着相似性,因此提供了理想的模型系统。因此,我研究了压力信号传导,转录调控和生理学的几个新颖特征。最初的工作集中在SYM1的表征上,SYM1是酵母中的一种新型热休克基因,已被证明在高温下不可发酵的碳源乙醇中生长是必需的,并且是哺乳动物肾脏疾病基因Mpv17的功能直系同源基因。其他工作解决了蛋白激酶A发出信号时,Akt相关激酶Sch9和酵母Hsp110蛋白伴侣同源物Sse1这两种蛋白的作用,确立了Sse1作为该途径的关键负调控因子。此外,我证明了Sse1在应激反应转录因子Msn2的生物发生和稳定性中的作用。这一发现已经扩展到包括其他高分子量蛋白质的精选子集,这表明该分子伴侣在稳定细胞蛋白质组中的作用更为广泛。我的博士论文的最后重点包括以下发现:从植物科Celasfraceae中分离的化合物Celastrofrace(中草药的一种成分)可以通过氧化应激机制激活酵母和哺乳动物细胞中的热激转录因子(Hsf1)。 。 Celastrol处理同时激活了热激和氧化应激反应途径,从而增强了细胞保护作用。

著录项

  • 作者

    Trott, Amy Elizabeth.;

  • 作者单位

    The University of Texas Graduate School of Biomedical Sciences at Houston.;

  • 授予单位 The University of Texas Graduate School of Biomedical Sciences at Houston.;
  • 学科 Biology Microbiology.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 227 p.
  • 总页数 227
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 微生物学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号