首页> 外文学位 >Microstructured materials synthesis via salt-assisted ultrasonic spray pyrolysis.
【24h】

Microstructured materials synthesis via salt-assisted ultrasonic spray pyrolysis.

机译:通过盐辅助超声喷雾热解合成微结构材料。

获取原文
获取原文并翻译 | 示例

摘要

Micro- and nanostructured materials are a very important part of today's technology due to their unique physical, optical, magnetic, and electrical properties. Many methods of producing these materials, however, require expensive precursors or templates and complicated, multi-step procedures. Ultrasonic spray pyrolysis (USP) is an industrially-scalable technique that has been shown to yield relatively monodisperse sub-micron particles in a continuous process using inexpensive and, often, environmentally-friendly precursors. The incorporation of an inert or reactive salt into the precursor solution allows for structural modification of the final product. Inert salts can phase separate as either liquids or solids (depending on the furnace temperature and the melting point of the salt or salt mixture) to provide an in situ template for formation of the product. The salt can then be easily removed from the product by washing and potentially reused. Reactive salts will decompose in the furnace creating gases which can increase the microporosity of products in USP. The work described in this dissertation shows the versatility of salt-assisted USP for making a wide variety of microstructured materials and highlights a few applications of the materials formed, including superhydrophobic surfaces, energy storage, and controlled drug release and hyperthermia. First, salt-assisted USP is used to make roughened ZnO microspheres. By controlling the amount of NaCl in the precursor solution, the agglomerated ZnO nanoparticles will form microspheres with varying degrees of roughness. The size of the particles formed is also easily controlled by adjusting the concentration of the precursors in the precursor solution. By controlling both the size and the roughness of the ZnO particles formed, the hierarchical structure of a film of these particles can be controlled. This has consequences for the wetting properties of the film. Specifically, hierarchically structured films are known to stabilize the Cassie-Baxter state and encourage superhydrophobic (or superhygrophobic) behavior. Very high surface area iron oxide microspheres can also easily be produced from USP. The crystallinity of the final product can be controlled by adjusting the precursor solution. When aqueous Fe3+ salts react with a weak base (e.g., Na2CO3), they can form high molecular weight iron polymer which is stable in solution (so-called Spiro-Saltman balls). Using the Spiro-Saltman precursor, USP yields high surface area (~300 m2/g) crystalline microspheres. If iron chloride is used in the place of iron nitrate, hollow spheres are obtained which have a lower surface area (~100 m2/g). Mixing different ratios of iron nitrate and iron chloride gives products with intermediate morphologies and surface areas. These iron oxide microspheres were tested as lithium-ion battery anodes. Salt-assisted USP has previously been used to make carbon spheres with a wide variety of morphologies. There is no predictive understanding, however, of why one morphology is formed over another. This is especially true when dealing with salt mixtures. As a simple system, sucrose was pyrolyzed with different ratios of sodium nitrate and sodium chloride. It was shown that the salt ratio dictates the morphology of the product whereas the furnace temperature (i.e., the phase of the salt solution) has little to no effect. With the addition of iron/nitrogen precursors, porous Fe/N/C microspheres were made and tested as oxygen reduction catalysts in fuel cells. Finally, microspheres containing superparamagnetic iron oxide nanoparticles are synthesized using USP. Magnetic silica microspheres were previously made using iron precursors. By introducing, cobalt, manganese, and copper precursors into the system, ferrite nanoparticles are formed within the silica microspheres. These nanoparticles are more stable at higher temperatures than the iron oxide nanoparticles. The silica microspheres, however, are not porous. Porous carbon microspheres with iron oxide nanoparticles can be made using USP. Unlike the silica microspheres, the carbon-based microspheres do not require annealing after production. The carbon microspheres have been shown to undergo magnetic heating and have shown slow drug release after loading with ibuprofen, making these spheres a promising candidate for a multifunctional biomedical device that incorporates hyperthermia, controlled drug release, and imaging contrast.
机译:由于其独特的物理,光学,磁性和电学性质,微结构和纳米结构材料是当今技术的重要组成部分。但是,生产这些材料的许多方法都需要昂贵的前体或模板以及复杂的多步骤程序。超声波喷雾热解(USP)是一种工业规模的技术,已显示使用廉价且通常为环境友好的前体在连续过程中可产生相对单分散的亚微米颗粒。将惰性或反应性盐掺入前体溶液中可以对最终产物进行结构修饰。惰性盐可以液体或固体形式相分离(取决于熔炉温度和盐或盐混合物的熔点),从而提供用于形成产品的原位模板。然后可以通过洗涤轻松地将盐从产品中除去,并可能重新使用。活性盐会在炉子中分解,产生气体,这会增加USP中产品的微孔率。这篇论文描述的工作表明了盐辅助USP在制备各种微结构材料方面的多功能性,并着重介绍了所形成材料的一些应用,包括超疏水表面,能量存储以及可控的药物释放和热疗。首先,盐辅助的USP用于制备粗糙的ZnO微球。通过控制前体溶液中NaCl的量,团聚的ZnO纳米颗粒将形成粗糙度不同的微球。通过调节前体溶液中前体的浓度,也容易控制形成的颗粒的尺寸。通过控制所形成的ZnO颗粒的大小和粗糙度,可以控制这些颗粒的膜的分层结构。这对薄膜的润湿性能有影响。具体地,已知分层结构的膜稳定Cassie-Baxter状态并促进超疏水(或超疏水)行为。极高表面积的氧化铁微球也可以很容易地由USP生产。最终产物的结晶度可通过调节前体溶液来控制。当Fe3 +盐水溶液与弱碱(例如Na2CO3)反应时,它们会形成高分子量的铁聚合物,该聚合物在溶液中稳定(所谓的Spiro-Saltman球)。使用Spiro-Saltman前驱体,USP可产生高表面积(〜300 m2 / g)的结晶微球。如果用氯化铁代替硝酸铁,则得到的空心球表面积较小(〜100 m2 / g)。混合不同比例的硝酸铁和氯化铁可得到具有中间形态和表面积的产品。这些氧化铁微球已作为锂离子电池阳极进行了测试。盐辅助的USP以前曾用于制造具有多种形态的碳球。但是,对于为什么一种形态形成在另一形态上尚无可预测的理解。处理盐混合物时尤其如此。作为一个简单的系统,将蔗糖用不同比例的硝酸钠和氯化钠热解。结果表明,盐的比例决定了产物的形态,而炉温(即盐溶液的相)几乎没有影响。通过添加铁/氮前体,制成了多孔Fe / N / C微球,并作为燃料电池中的氧还原催化剂进行了测试。最后,使用USP合成了包含超顺磁性氧化铁纳米颗粒的微球。磁性二氧化硅微球以前是使用铁前体制成的。通过将钴,锰和铜前体引入系统中,在二氧化硅微球体内形成了铁氧体纳米颗粒。这些纳米颗粒在高温下比氧化铁纳米颗粒更稳定。然而,二氧化硅微球不是多孔的。可以使用USP制备具有氧化铁纳米颗粒的多孔碳微球。与二氧化硅微球不同,碳基微球在生产后不需要退火。碳微球已被证明会受到电磁加热,并在布洛芬装载后显示出缓慢的药物释放,这使这些球成为多功能生物医学装置的有前途的候选者,该装置具有热疗,可控的药物释放和成像对比度。

著录项

  • 作者

    Overcash, John Walter.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Chemistry General.;Chemistry Physical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 169 p.
  • 总页数 169
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号