首页> 外文学位 >Collaborative cross-layer design in wireless sensor networks.
【24h】

Collaborative cross-layer design in wireless sensor networks.

机译:无线传感器网络中的协作跨层设计。

获取原文
获取原文并翻译 | 示例

摘要

Energy efficiency is a fundamental requirement in Wireless Sensor Networks (WSNs) due to its critical importance in a wide range of applications where recharging/replacing sensor batteries is unfeasible. In WSN applications such as field surveillance, environmental monitoring, disaster response, and traffic control, the cost of recharging batteries or replacing sensors may exceed the cost of deploying a new network. This led energy efficient operations to be the overarching goal of protocols employed at different layers of the network stack. In response, a plethora of research efforts have been pursued to achieve this goal, many of which utilize collaboration either between different layers of the network stack or between sensor nodes. In the literature, the former is known as Cross-Layer (CL) design and the latter is often referred to as Collaborative WSNs (CWSNs). Both CL design and CWSNs explore benefits of creating a new dimension of awareness by sharing information that is otherwise hidden and we refer to the former as intra-nodal collaboration and to the latter as inter-nodal collaboration. The benefits from such collaborations are mainly dependent on the context in which the new information is processed and utilized. Existing state of the art in this diverse area lack a unified design framework that allows seamless CL design for communication and processing operations in WSNs. Towards this end, we propose several energy-efficient collaborative CL schemes with various contexts of interest. First, we develop CL-MAC, a Cross-Layer Medium Access Control protocol for synchronous WSNs. CL-MAC takes advantage of routing layer information and inter-nodal collaboration in order to efficiently handle multi-packet, multi-hop and multi-flow traffic patterns while adapting to a wide range of traffic loads. CL-MAC's scheduling is based on a unique structure of Flow Setup Packets (FSPs) that efficiently utilize routing information to transmit multiple data packets over multiple multi-hop flows. Unlike other MAC protocols, supporting construction of multi-hop flows, CL-MAC considers all pending packets in the routing layer buffer and all flow setup requests from neighbors, when setting up a flow. This allows CL-MAC to make more informed scheduling decisions, reflecting the current network status, and dynamically optimize its scheduling mechanism accordingly. Second, we investigate supporting multi-hop and multi-packet routing in asynchronous WSNs in order to improve end-to-end latency and overall power consumption in such traffic patterns. We propose extending the knowledge of asynchronous MAC schemes to utilize a combination of routing information (intra-nodal) and duty-cycling information (inter-nodal) to temporarily synchronize nodes on the routing path between the transmitter and receiver. This idea can be applied to most asynchronous MAC schemes and was tested on RI-MAC (one of the recent energy efficient asynchronous MAC protocols). Third, we study collaboration between MAC, routing and application layers in order to eliminate communication redundancy and improve load balancing across the entire network via forming data-dependent virtual clusters. We propose a CL Dynamic Virtual Clustering-based Data Gathering technique called DVC-DG. DVC-DG integrates overhearing at the MAC layer with data being processed/communicated at upper layers (i.e., routing and application layers) to realize implicit virtual clusters and eliminate data redundancy. Unlike most existing clustering-based data gathering solutions, which employ an explicit data-independent clustering algorithm to choose cluster heads and members, DVC-DG eliminates the need for special cluster head election mechanisms and distributes common centralized cluster-head responsibilities (e.g., data collection and aggregation) over all cluster members and eliminates data redundancy at its very source rather than at the cluster-head. Finally, we propose a Cross-Layer Application-aware Paradigm (CLAP) that realizes and facilitates seamless collaboration across layers (intra-nodal) and between nodes (inter-nodal). CLAP allows any layer in the network stack to impact the behavior of other layers, according to the context of interest. The key is a new means of exchanging and processing CL information, called the Information-Layer (I-Layer). The I-Layer allows each layer of the network stack to publish its local information to be shared with other layers and subscribe other layers' shared information. Moreover, we augment CLAP into the SIDnet-SWANS simulator via a new API design which eliminates the need for hacking/bypassing conventional design hierarchies and simulator architectures. This greatly reduces the design and implementation complexities of CL protocols. Furthermore, to demonstrate CLAP's unique capabilities, we utilize it to develop a sample CL protocol, which constantly monitors the application's current demands (i.e., contexts of interest) and re-configures underlying protocols accordingly.
机译:能源效率是无线传感器网络(WSN)的基本要求,因为它在无法对传感器电池进行充电/更换的广泛应用中至关重要。在诸如现场监视,环境监测,灾难响应和交通控制之类的WSN应用中,为电池充电或更换传感器的成本可能超过部署新网络的成本。这导致节能操作成为网络堆栈不同层采用的协议的首要目标。作为响应,已经进行了大量研究工作以实现该目标,其中许多研究利用网络堆栈的不同层之间或传感器节点之间的协作。在文献中,前者被称为跨层(CL)设计,而后者通常被称为协作WSN(CWSN)。 CL设计和CWSN都通过共享原本隐藏的信息来探索创建意识新维度的好处,我们将前者称为节点内协作,而将后者称为节点间协作。这种合作的收益主要取决于处理和利用新信息的环境。在这个多样化领域中,现有技术缺乏统一的设计框架,该框架允许针对WSN中的通信和处理操作进行无缝的CL设计。为此,我们提出了几种具有各种兴趣的节能合作CL方案。首先,我们开发CL-MAC,一种用于同步WSN的跨层媒体访问控制协议。 CL-MAC利用路由层信息和节点间协作的优势,以有效处理多数据包,多跳和多流的流量模式,同时适应各种流量负载。 CL-MAC的调度基于流建立包(FSP)的独特结构,该结构有效利用路由信息在多个多跳流上传输多个数据包。与其他支持多跳流构造的MAC协议不同,CL-MAC在设置流时会考虑路由层缓冲区中的所有待处理数据包以及来自邻居的所有流设置请求。这使CL-MAC可以做出更明智的调度决策,以反映当前的网络状态,并相应地动态优化其调度机制。其次,我们研究了在异步WSN中​​支持多跳和多数据包路由,以改善这种流量模式下的端到端延迟和总体功耗。我们建议扩展异步MAC方案的知识,以利用路由信息(节点内)和占空比信息(节点间)的组合来临时同步发送器和接收器之间路由路径上的节点。这个想法可以应用于大多数异步MAC方案,并在RI-MAC(最新的节能异步MAC协议之一)上进行了测试。第三,我们研究MAC,路由和应用程序层之间的协作,以消除通信冗余并通过形成依赖数据的虚拟集群来改善整个网络的负载平衡。我们提出了一种基于CL动态虚拟群集的数据收集技术,称为DVC-DG。 DVC-DG将MAC层的监听与上层(即路由和应用层)正在处理/通信的数据集成在一起,以实现隐式虚拟集群并消除数据冗余。与大多数现有的基于聚类的数据收集解决方案不同,该解决方案采用显式的与数据无关的聚类算法来选择聚类头和成员,DVC-DG消除了对特殊聚类头选举机制的需要,并可以分配常见的集中式聚类头职责(例如,数据收集和聚合),并消除了源头而不是簇头的数据冗余。最后,我们提出了一种跨层应用感知范例(CLAP),该范例实现并促进了跨层(节点内)和节点之间(节点间)的无缝协作。根据感兴趣的上下文,CLAP允许网络堆栈中的任何层影响其他层的行为。密钥是一种交换和处理CL信息的新方法,称为信息层(I-Layer)。 I层允许网络堆栈的每一层发布要与其他层共享的本地信息,并订阅其他层的共享信息。此外,我们通过新的API设计将CLAP扩展到SIDnet-SWANS模拟器中,从而消除了黑客入侵/绕过常规设计层次结构和模拟器架构的需求。这大大降低了CL协议的设计和实现复杂性。此外,为了展示CLAP的独特功能,我们利用它来开发示例CL协议,该协议会不断监控应用程序的当前需求(即,感兴趣的上下文)并相应地重新配置基础协议。

著录项

  • 作者

    Hefeida, Mohamed Salem.;

  • 作者单位

    University of Illinois at Chicago.;

  • 授予单位 University of Illinois at Chicago.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 151 p.
  • 总页数 151
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 遥感技术;
  • 关键词

  • 入库时间 2022-08-17 11:40:56

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号