首页> 外文学位 >Metal oxide electrokinetc micropumps & capillary electrophoresis of biomolecules and carbon based nanomaterials.
【24h】

Metal oxide electrokinetc micropumps & capillary electrophoresis of biomolecules and carbon based nanomaterials.

机译:生物分子和碳基纳米材料的金属氧化物电动微泵和毛细管电泳。

获取原文
获取原文并翻译 | 示例

摘要

Separation science is at the center of the analytical laboratory. New technological advances and applications evolve from knowledge obtained in different research areas, such as materials sciences, chemical synthesis, and fluidics, among others. The work in this dissertation relates to two areas: (1) the development of capillary electrophoretic methodology to separate biomolecules and/or nanomaterials, and (2) the synthesis of materials suitable for electrokinetic pumping. By means of capillary electrophoresis (CE), carbon-based nanoparticles were separated based on their charge-to-size ratio, providing unprecedented separations of C-dots, revealing the complexity of these materials when synthesized. Insight into the heterogeneity of these materials as a function of synthetic parameters was studied by means of CE. It is shown that CE coupled with laser-induced photoluminescence (LIP) is an excellent analytical technique to evaluate synthetic routes to produce carbon-based nanoparticles as well as to explore their inherent characteristics.;Capillary isoelectric focusing (cIEF), a variant of CE, was used to develop methodology that allows the study of the mammalian target of rapamycin (mTOR) complexes, a serine threonine protein kinase that regulates cell growth, cell proliferation, cell survival and protein synthesis. The high efficiency cIEF separation method has shown the potential for the differentiation of protein complexes similar in size and biochemical composition. A fluorescently labeled antibody was used to monitor the mTOR complexes from cell extracts via cIEF after affinity interaction between the antibody and the complexes.;Because of the increased interest in developing devices capable of controlling and manipulating fluid flows within the length scale of millimeters or less, we investigated the electrokinetic pumping capabilities of the metal oxides zirconia and hafnia for the fabrication of electrokinetic micropumps (EKP). These are a type of dynamic pumping systems based on electroosmotic flow (EOF). Zirconia and hafnia monolithic materials were synthesized and their physico-chemical and electrokinetic properties were first evaluated. Evaluation of zirconia and hafnia EKPs showed that these metal oxides were superior to the typical EKPs fabricated from silica based monolithic structures. Zirconia in particular can generate electroosmotic flows to pump neat methanol at much higher flow rates than the traditional silica-based EKPs. These findings will have impact the areas of chromatography, microfluidics, and in methanol-based fuel cells.
机译:分离科学是分析实验室的中心。新技术的进步和应用是从不同研究领域中获得的知识发展起来的,例如材料科学,化学合成和流体技术等。本论文的工作涉及两个领域:(1)毛细管电泳方法的发展,以分离生物分子和/或纳米材料;(2)合成适合电动泵浦的材料。通过毛细管电泳(CE),基于碳纳米粒子的电荷-尺寸比将其分离,从而提供了空前的C-点分离,从而揭示了合成这些材料时的复杂性。通过CE研究了这些材料的异质性作为合成参数的函数。研究表明,CE与激光诱导的光致发光(LIP)结合是评估合成路线以生产碳基纳米颗粒并探究其固有特性的出色分析技术。毛细管等电聚焦(cIEF),CE的一种变体用于开发雷帕霉素(mTOR)复合物哺乳动物靶标的方法学,雷帕霉素(mTOR)复合物是一种调节细胞生长,细胞增殖,细胞存活和蛋白质合成的丝氨酸苏氨酸蛋白激酶。高效cIEF分离方法已显示出可区分大小和生化组成相似的蛋白质复合物的潜力。在抗体和复合物之间发生亲和相互作用后,使用荧光标记的抗体通过cIEF监测来自细胞提取物的mTOR复合物;由于人们对开发能够控制和操纵毫米级或更小的长度范围内的流体流动的设备的兴趣日益浓厚,我们研究了金属氧化物氧化锆和氧化f在电动微型泵(EKP)制造中的电动抽吸能力。这是一种基于电渗流(EOF)的动态泵系统。合成了氧化锆和氧化f整体材料,并首先评估了它们的物理化学和电动特性。对氧化锆和氧化f EKP的评估表明,这些金属氧化物优于由基于二氧化硅的整体结构制成的典型EKP。特别是氧化锆可以产生电渗流,以比传统的基于二氧化硅的EKP高得多的流速泵送纯甲醇。这些发现将影响色谱,微流控技术以及基于甲醇的燃料电池领域。

著录项

  • 作者

    Lassala, Ivonne M. Ferrer.;

  • 作者单位

    State University of New York at Buffalo.;

  • 授予单位 State University of New York at Buffalo.;
  • 学科 Chemistry Analytical.;Chemistry Molecular.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 217 p.
  • 总页数 217
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号