首页> 外文学位 >Metabolic engineering in plants to control source/sink relationship and biomass distribution.
【24h】

Metabolic engineering in plants to control source/sink relationship and biomass distribution.

机译:植物代谢工程,以控制源/库关系和生物量分布。

获取原文
获取原文并翻译 | 示例

摘要

Traditional methods like pruning and breeding have historically been used in crop production to divert photoassimilates to harvested organs, but molecular biotechnology is now poised to significantly increase yield by manipulating resource partitioning. It was hypothesized that metabolic engineering in targeted sink tissues can favor resource partitioning to increase harvest. Raffinose Family Oligosaccharides (RFOs) are naturally occurring oligosaccharides that are widespread in plants and are responsible for carbon transport, storage and protection against cold and drought stress. Transgenic plants (GRS47, GRS63) were engineered to generate and transport more RFOs through the phloem than the wild type plants. The transgenic lines produced more RFOs and the RFOs were also detected in their phloem exudates. But the 14CO 2 labeling and subsequent thin layer chromatography analysis showed that the RFOs were most likely sequestered in an inactive pool and accumulate over time. Crossing GRS47 and GRS63 lines with MIPS1 plants (that produces more myo-inositol, a substrate in the RFO biosynthetic pathway) did not significantly increase the RFOs in the crossed lines. For future manipulation of RFO degradation in sink organs, the roles of the endogenous alpha-galactosidases were analyzed. The alkaline alpha-galactosidases (AtSIP1 and AtSIP2 in Arabidopsis) are most likely responsible for digesting RFOs in the cytoplasm and may influence the ability to manipulate RFO levels in engineered plants. Atsip1/2 (AtSIP1/AtSIP2 double-knockout plants) were generated and phenotypically characterized based on seed germination patterns, flowering time, and sugar content to observe the impact on RFO sugar levels. The observations and analysis from these lines provide a basis for further insight in the manipulation of resource allocation between source and sink tissues in plants for future research.
机译:历史上,修剪和育种等传统方法已用于作物生产中,将光同化物转移到收获的器官上,但是分子生物技术现在准备通过操纵资源分配来显着提高产量。据推测,针对性的水槽组织中的代谢工程可以有利于资源分配以增加收成。棉子糖家族寡糖(RFO)是天然存在的寡糖,广泛存在于植物中,负责碳的运输,储存和保护,免受寒冷和干旱的胁迫。与野生型植物相比,转基因植物(GRS47,GRS63)经过工程改造后可以通过韧皮部生成和转运更多的RFO。转基因品系产生更多的RFO,并且在韧皮部分泌物中也检测到RFO。但是14CO 2标记和随后的薄层色谱分析表明,RFO最有可能被隔离在一个无活性的池中并随时间积累。将GRS47和GRS63品系与MIPS1植物杂交(会产生更多的肌醇,这是RFO生物合成途径中的底物)不会显着增加杂交品系中的RFO。为了将来操纵RFO在水槽器官中的降解,分析了内源性α-半乳糖苷酶的作用。碱性α-半乳糖苷酶(拟南芥中的AtSIP1和AtSIP2)最有可能消化细胞质中的RFO,并可能影响在工程植物中操纵RFO含量的能力。产生了Atsip1 / 2(AtSIP1 / AtSIP2双敲除植物),并根据种子发芽模式,开花时间和糖含量进行表型鉴定,以观察对RFO糖水平的影响。这些方面的观察和分析为进一步了解植物中源组织和库组织之间的资源分配提供了基础,以供将来研究。

著录项

  • 作者

    Lahiri, Ipsita.;

  • 作者单位

    University of North Texas.;

  • 授予单位 University of North Texas.;
  • 学科 Chemistry Biochemistry.;Engineering Agricultural.;Agriculture Plant Culture.;Biology Molecular.
  • 学位 M.S.
  • 年度 2013
  • 页码 82 p.
  • 总页数 82
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号