首页> 外文学位 >Variable stiffness suspension system.
【24h】

Variable stiffness suspension system.

机译:可变刚度悬挂系统。

获取原文
获取原文并翻译 | 示例

摘要

Improvements over passive suspension designs is an active area of research. Past approaches utilize one of three techniques; adaptive, semi-active, or fully active suspension. An adaptive suspension utilizes a passive spring and an adjustable damper with slow response to improve the control of ride comfort and road holding. A semi-active suspension is similar, except that the adjustable damper has a faster response and the damping force is controlled in real-time. A fully active suspension replaces the damper with a hydraulic actuator, or other types of actuators like electromagnetic actuators, which can achieve optimum vehicle control, but at the cost of design complexity. The fully active suspension is also not fail-safe in the sense that performance degradation results whenever the control fails, which may be due to either mechanical, electrical, or software failures. Recently, research in semi-active suspensions has continued to advance with respect to capabilities, narrowing the gap between semi-active and fully active suspension systems. Today, semi-active suspensions (e.g using Magneto-Rheological (MR), Electro-Rheological (ER) etc) are widely used in the automobile industry due to their small weight and volume, as well as low energy consumption compared to purely active suspension systems.;However, most semi-active design concepts are focused on only varying the damping coefficient of the shock absorber while keeping the stiffness constant. Meanwhile, in suspension optimization, both the damping coefficient and the spring rate of the suspension elements are usually used as optimization arguments. Therefore, a semi-active suspension system that varies both the stiffness and damping of the suspension element could provide more flexibility in balancing competing design objectives.;This work considers the design, analyses, and experimentation of a new variable stiffness suspension system. The design is based on the concept of a variable stiffness mechanism. The mechanism, which is a simple arrangement of two springs, a lever arm, and a pivot bar, has an effective stiffness that is a rational function of the horizontal position of the pivot. The effective stiffness is varied by changing the position of the pivot while keeping the point of application of the external force constant. The overall suspension system consists of a horizontal control strut and a vertical strut. The main idea is to vary the load transfer ratio by moving the location of the point of attachment of the vertical strut to the car body. This movement is controlled passively, semi-actively, and actively using the horizontal strut. The system is analyzed using an L2-gain analysis based on the concept of energy dissipation. The analyses, simulation, experimental results, show that the variable stiffness suspension achieves better performance than the constant stiffness counterpart. The performance criteria used are; ride comfort, characterized by the car body acceleration, suspension deflection, and road holding, characterized by tire deflection.
机译:对被动悬架设计的改进是研究的活跃领域。过去的方法利用以下三种技术之一:自适应,半主动或全主动悬架。自适应悬架利用被动弹簧和可调节的减震器,具有较慢的响应速度,以改善对乘坐舒适性和抓地力的控制。半主动悬架类似,不同之处在于可调阻尼器具有更快的响应速度,并且阻尼力是实时控制的。完全主动的悬架用液压致动器或其他类型的致动器(如电磁致动器)代替了阻尼器,可以实现最佳的车辆控制,但以设计复杂性为代价。全主动悬架也不安全,因为一旦控制失败(可能是由于机械,电气或软件故障),都会导致性能下降。近来,关于半主动悬架的能力方面的研究一直在继续发展,从而缩小了半主动悬架与完全主动悬架系统之间的差距。如今,半活性悬架(例如,使用磁流变(MR),电流变(ER)等)由于其重量轻,体积小以及与纯活性悬架相比能耗低而被广泛应用于汽车行业。但是,大多数半主动式设计概念只关注于改变减震器的阻尼系数,同时保持刚度不变。同时,在悬架优化中,悬架元件的阻尼系数和弹簧刚度通常都用作优化参数。因此,同时改变悬架元件的刚度和阻尼的半主动悬架系统可以在平衡竞争性设计目标时提供更大的灵活性。这项工作考虑了新的可变刚度悬架系统的设计,分析和试验。该设计基于可变刚度机制的概念。该机构是两个弹簧,杠杆臂和枢轴杆的简单布置,其有效刚度是枢轴水平位置的合理函数。通过改变枢轴的位置来改变有效刚度,同时保持外力的施加点恒定。整个悬架系统由水平控制撑杆和垂直撑杆组成。主要思想是通过移动垂直支柱到车身的连接点的位置来改变载荷传递比。使用水平支柱可以被动,半主动和主动地控制此运动。使用基于能量耗散概念的L2增益分析对系统进行分析。分析,仿真和实验结果表明,可变刚度悬架比恒定刚度悬架具有更好的性能。使用的性能标准是:以车身加速度,悬架挠度为特征的行驶舒适性,以轮胎挠度为特征的抓地力。

著录项

  • 作者

    Anubi, Olugbenga Moses.;

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Engineering Mechanical.;Engineering Automotive.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 192 p.
  • 总页数 192
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号