首页> 外文学位 >A geochemical compositional simulator for modeling carbon dioxide sequestration in geological formations.
【24h】

A geochemical compositional simulator for modeling carbon dioxide sequestration in geological formations.

机译:一种地球化学组成模拟器,用于模拟地质构造中的二氧化碳固存。

获取原文
获取原文并翻译 | 示例

摘要

Geological storage is one of the key technologies for reducing anthropogenic emissions of CO2. However, if this technology is to be implemented safely, efficiently, and predictably, the knowledge of the geology, geophysics, and geochemistry of CO2 storage must be refined. When CO2 is injected into geological formations, various physical and geochemical trapping mechanisms would prevent the CO2 from escaping to the surface. The simulation of CO2 injection will help us to understand the behaviors of CO2 and other components during the whole process and to assess the storage capacity of target formations and the leakage risk of CO2.;Natural variables are chosen as primary variables for their simplicity. Variable substitution and a novel equation alignment technique are required to correctly handle phase change, which is very common in the different phases of the CO2 sequestration process. The reaction option available in the model is able to handle complex geochemical systems. For maximum numerical stability, a fully implicit scheme and an analytical Jacobian matrix are used, and all equations are solved simultaneously in the simulator. Gaussian elimination is applied twice before the solution of the linear equation system, first to eliminate equilibrium reaction rates and then to reduce the size of the linear system. A new solution method is implemented to make the model more suitable to solve problems in complex geologic formations with complex geochemistry models. A novel parallelization scheme for domains with complex fracture systems is also described.;The model is verified using analytical solutions and benchmarks. A variety of applications are demonstrated. The CVFEM-based discrete fracture network method is used for the first time to analyze the impact fault/fracture networks may have on the integrity of storage in the CO2 sequestration process. It is shown that this fracture representation is essential in correctly modeling the rapid and oftentimes uneven migration of CO2 to the seal. Meanwhile. hysteresis effect in CO2 sequstration is examined to show the residual trapping mechanism, and the performance of parallel computation is evaluated.;In summary, successful completion of this project will result in the creation of a parallel and modularized simulator that can address the CO 2 sequestration process in highly complex fractured geological systems.;A geochemical coupled compositional model is developed to describe the complex processes during CO2 sequestration. The model is built on a modularized framework that allows coupling different discretization schemes with simulations of different physical processes. The modular approach allows the use of different spatial discretization methods including control-volume finite element method (CVFEM), standard finite difference method (SFD) and a generalized finite volume method (FVM).
机译:地质封存是减少人为排放二氧化碳的关键技术之一。但是,如果要安全,有效且可预测地实施此技术,则必须完善二氧化碳存储的地质,地球物理学和地球化学方面的知识。当将CO2注入地质构造时,各种物理和地球化学的捕集机制将阻止CO2泄漏到地表。二氧化碳注入的模拟将有助于我们了解二氧化碳和其他组分在整个过程中的行为,并评估目标地层的储存能力和二氧化碳的泄漏风险。为了简化起见,选择自然变量作为主要变量。需要变量替换和新颖的方程式对齐技术来正确处理相变,这在二氧化碳封存过程的不同阶段非常普遍。该模型中可用的反应选项能够处理复杂的地球化学系统。为了获得最大的数值稳定性,使用了完全隐式格式和解析雅可比矩阵,并在模拟器中同时求解所有方程。在线性方程组解之前应用两次高斯消除,首先消除平衡反应速率,然后减小线性系统的大小。实现了一种新的求解方法,使该模型更适合解决具有复杂地球化学模型的复杂地质构造中的问题。还描述了具有复杂裂缝系统的区域的新型并行化方案。;使用解析解和基准对模型进行了验证。演示了多种应用。首次使用基于CVFEM的离散裂缝网络方法来分析断层/裂缝网络可能对CO2固存过程中存储完整性的影响。结果表明,这种裂缝表现形式对于正确模拟快速且经常不均匀的CO2运往密封圈至关重要。与此同时。检查了CO2隔离过程中的磁滞效应,以显示残留的捕集机制,并评估了并行计算的性能。总之,该项目的成功完成将导致创建可解决CO 2隔离的并行和模块化模拟器建立了一个地球化学耦合成分模型来描述二氧化碳固存过程中的复杂过程。该模型建立在模块化框架上,该框架允许将不同的离散化方案与不同物理过程的仿真结合在一起。模块化方法允许使用不同的空间离散化方法,包括控制体积有限元方法(CVFEM),标准有限差分方法(SFD)和广义有限体积方法(FVM)。

著录项

  • 作者

    Gu, Zhiqiang.;

  • 作者单位

    The University of Utah.;

  • 授予单位 The University of Utah.;
  • 学科 Engineering Petroleum.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 152 p.
  • 总页数 152
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号