首页> 外文学位 >Contact mechanics and adhesion of bio-inspired structured surfaces.
【24h】

Contact mechanics and adhesion of bio-inspired structured surfaces.

机译:接触力学和生物启发性结构化表面的附着力。

获取原文
获取原文并翻译 | 示例

摘要

Nature has shown that surface properties of contacting surfaces, such as adhesion, compliance, and friction can be controlled by structuring the near-surface architecture. For example, the feet of many insects and lizards use variations on the theme of thin-film terminated fibrillar structures. This has recently inspired much work on the development of bio-inspired fibrillar structures. It is important to understand the underlying adhesion mechanics of such architectures to establish structure-property relations. We have studied two types of structured surfaces: (a) A fibrillar array with a thin terminal film that shows significant enhancement in adhesion, compliance, and static friction, and (b) Rippled surfaces with mechanically tunable adhesion.;To study the properties of these surfaces using indentation, we developed a model-independent method to quantitatively extract the work of adhesion of structured surfaces from such experiments that does not require a theory such as that of Johnson, Kendall, and Roberts, which is used widely for flat surfaces but is not applicable to structured surfaces.;Using the indentation method we have studied a basic question related to the behavior of the film-terminated bio-inspired fibrillar architecture: what is the coupling between the crack-trapping mechanism that causes adhesion enhancement due to architecture and the intrinsic work of adhesion, which can be modified by surface chemistry? We have studied this in two ways, (a) by examining the rate dependence of adhesion, and (b) by measuring adhesion under water. From this study, we have established that the crack-trapping mechanism couples multiplicatively to the intrinsic work of adhesion of the interface. Also, we have conducted preliminary tests to study the effect of roughness on the adhesion of these samples. These samples showed better tolerance for roughness than flat control samples.;The indentation method has also been used to study how modulation of the amplitude of a rippled surface by applied strain leads to mechanically tunable adhesion. We have explained this quantitatively by developing a simple contact mechanics model for indentation of rippled surfaces. The effect of ripple amplitude on adhesion is studied in different samples: (1) Original wrinkled samples with a stiff, residually-stressed, silicaceous surface layer, (2) Rippled samples obtained by replicating the rippled surface structure of original samples on fresh stress-free surfaces. These surfaces showed a significant enhancement of adhesion when complete interfacial contact is achieved, but lose adhesion when contact is partial. A more detailed contact mechanics based model has been formulated to understand the mechanics of adhesion in these surfaces in the regimes of complete and partial interfacial contact.;Using complementary rippled surfaces, we have demonstrated high adhesion selectivity, which is studied theoretically as well as through finite element analysis in this work.;Behavior of surfaces in contact with other surfaces is highly influenced by their frictional response. We studied a phenomenon, called Schallamach waves, that is commonly observed while sliding a soft rubbery surface against a rigid surface. This involves folding of the soft surface that leads to formation of tunnels of air at the interface traveling in the direction opposite to sliding. We prepared a finite element model to study the conditions for formation of these detachment waves.
机译:自然已经表明,可以通过构造近表面结构来控制接触表面的表面特性,例如附着力,顺应性和摩擦力。例如,许多昆虫和蜥蜴的脚都使用以薄膜端接的原纤维结构为主题的变体。最近,这激发了许多有关生物启发性原纤维结构开发的工作。重要的是要了解此类体系结构的基本粘合机制,以建立结构-属性关系。我们研究了两种类型的结构化表面:(a)带有末端薄膜的原纤维阵列,其粘附性,顺应性和静摩擦力显着增强,以及(b)具有机械可调粘附力的波纹状表面;我们使用压痕法开发了这些表面,我们开发了一种与模型无关的方法,从这种实验中定量提取结构化表面的粘附力,而该实验不需要像Johnson,Kendall和Roberts这样的理论,该理论被广泛用于平坦表面,但是不适用于结构化表面。;使用压痕方法,我们研究了与薄膜端接的生物启发纤维结构的行为有关的一个基本问题:由于结构而导致粘着力增强的裂纹捕获机制之间的耦合是什么?以及可以通过表面化学改变的内在粘附力?我们已经通过两种方式对此进行了研究:(a)通过检查附着力的速率依赖性,以及(b)通过在水下测量附着力。从这项研究中,我们已经建立了裂纹捕获机制成倍地耦合到界面粘合的固有工作。此外,我们已经进行了初步测试,以研究粗糙度对这些样品附着力的影响。这些样品显示出比平坦对照样品更好的粗糙度耐受性。压痕方法还用于研究施加的应变对波纹表面振幅的调节如何导致机械可调的粘附力。我们通过开发用于波纹表面压痕的简单接触力学模型来定量地解释了这一点。在不同的样品中研究了波纹幅度对附着力的影响:(1)原始皱纹样品具有坚硬,残余应力的硅质表面层;(2)通过在新鲜应力下复制原始样品的波纹状表面结构而获得的波纹状样品-自由表面。当实现完全的界面接触时,这些表面显示出显着的粘合性增强,但是当部分接触时失去了粘合性。建立了一个更详细的基于接触力学的模型,以了解在完全和部分界面接触的情况下这些表面的粘附机理。使用互补的波纹表面,我们展示了高的粘附选择性,这在理论上以及通过有限元分析。;与其他表面接触的表面的行为在很大程度上受到其摩擦响应的影响。我们研究了一种称为Schallamach波的现象,这种现象通常是在将柔软的橡胶表面滑动到刚性表面时观察到的。这涉及柔软表面的折叠,这导致在沿与滑动相反的方向行进的界面处形成空气通道。我们准备了一个有限元模型来研究这些脱离波的形成条件。

著录项

  • 作者

    Vajpayee, Shilpi.;

  • 作者单位

    Lehigh University.;

  • 授予单位 Lehigh University.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 253 p.
  • 总页数 253
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号