首页> 外文学位 >Experimental and modeling investigations of biomass particle combustion.
【24h】

Experimental and modeling investigations of biomass particle combustion.

机译:生物质颗粒燃烧的实验和模型研究。

获取原文
获取原文并翻译 | 示例

摘要

This investigation provides a comprehensive analysis of entrained-flow biomass combustion processes. Experimental and theoretical investigations indicate how particle shape and size influence biomass combustion rates. Experimental samples include flake-like, cylinder-like, and equant (nearly spherical) shapes with similar particle masses and volumes but different surface areas. Samples of small (less than 500 mum) particles were passed through a laboratory entrained-flow reactor in a nitrogen/air atmosphere and a maximum reactor wall temperature of 1600 K, while large samples were reacted in suspension in a single particle furnace operated at similar conditions as the entrained-flow reactor. A separately developed computer and image analysis system was used to determine particle surface-area-to-volume ratios based on three orthogonal particle silhouettes. Experimental data indicate that equant (spherical) particles react more slowly than the other shapes, with the conversion time ratio required for complete combustion becoming greater as particle mass increases and reaching a factor of two or more for particles larger than 1 mm in diameter (which includes most particles in commercial application).; A color-band, non-contact pyrometer developed in this project measured particle surface temperatures and flame temperatures during pyrolysis and char burning processes. This technique employs widely available and relative inexpensive cameras and detectors. The camera-measured temperature data agree with black body calibration data within the accuracy of the data (+/- 20°C) and with thermocouple-measured data and model predictions within the repeatability of the data (+/- 50°C) in most cases.; A one-dimensional, transient particle combustion model simulates the drying, pyrolysis, and char oxidation and gasification processes of particles with different shapes. The model also predicts the shrinking/swelling and surrounding flame combustion behaviors of a single particle. Model simulations of the three shapes agree nearly within experimental uncertainty with the data. For biomass particle devolatilization processes, model predictions extended to a wider range of sizes predict the effects of shape and size on yields and overall mass conversion rates. The near-spherical particle loses mass most slowly and its conversion time significantly differs from those of flake-like particles and cylinder-like particles as particle equivalent diameter increases. Little difference exists between cylinder- and plate-like particles.
机译:这项研究提供了对夹带流生物质燃烧过程的综合分析。实验和理论研究表明颗粒形状和大小如何影响生物质燃烧速率。实验样品包括片状,圆柱状和等量(近球形)形状,其颗粒质量和体积相似,但表面积不同。小颗粒(小于500微米)的样品在氮气/空气气氛中通过实验室气流床反应器,最大反应器壁温为1600 K,而大样品在悬浮液中以相似的操作在单颗粒炉中反应条件作为夹带流反应器。分别开发的计算机和图像分析系统用于根据三个正交的粒子轮廓确定粒子表面积与体积之比。实验数据表明,等效(球形)颗粒的反应比其他形状慢得多,随着颗粒质量的增加,完全燃烧所需的转换时间比变得更大,而对于直径大于1毫米的颗粒,转换时间比达到了两倍或更多(包括商业应用中的大多数颗粒)。在该项目中开发的色带非接触式高温计在热解和焦炭燃烧过程中测量了颗粒表面温度和火焰温度。该技术采用广泛可用且相对便宜的照相机和检测器。相机测量的温度数据与黑体校准数据在数据的精度范围内(+/- 20°C)一致,与热电偶测量的数据和模型预测值在数据的可重复性范围内(+/- 50°C)一致。在大多数情况下。;一维瞬态粒子燃烧模型模拟了具有不同形状的粒子的干燥,热解以及炭氧化和气化过程。该模型还预测单个粒子的收缩/膨胀和周围火焰燃烧行为。三种形状的模型仿真几乎在实验不确定性范围内与数据吻合。对于生物质颗粒脱挥发分过程,模型预测扩展到更大的尺寸范围,可预测形状和尺寸对产量和整体质量转化率的影响。随着颗粒当量直径的增加,近球形颗粒的质量损失最缓慢,并且其转化时间与片状颗粒和圆柱状颗粒的转化时间明显不同。圆柱状和板状颗粒之间几乎没有差异。

著录项

  • 作者

    Lu, Hong.;

  • 作者单位

    Brigham Young University.;

  • 授予单位 Brigham Young University.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 192 p.
  • 总页数 192
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化工过程(物理过程及物理化学过程);
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号