首页> 外文学位 >Analysis and Optimization of Stress Wave Propagation in Two-Dimensional Granular Crystals with Defects.
【24h】

Analysis and Optimization of Stress Wave Propagation in Two-Dimensional Granular Crystals with Defects.

机译:具有缺陷的二维颗粒晶体中应力波传播的分析和优化。

获取原文
获取原文并翻译 | 示例

摘要

Granular crystals are compact periodic assemblies of elastic articles in Hertzian contact whose dynamic response can be tuned from strongly nonlinear to linear by the addition of a static precompression force. This unique feature allows for a wide range of studies that include the investigation of new fundamental nonlinear phenomena in discrete systems such as solitary waves, shock waves, discrete breathers and other defect modes. In the absence of precompression, a particularly interesting property of these systems is their ability to support the formation and propagation of spatially localized soliton-like waves with highly tunable properties. The wealth of parameters one can modify (particle size, geometry and material properties, periodicity of the crystal, presence of a static force, type of excitation, etc.) makes them ideal candidates for the design of new materials for practical applications. This thesis describes several ways to optimally control and tailor the propagation of stress waves in granular crystals through the use of heterogeneities (interstitial defect particles and material heterogeneities) in otherwise perfectly ordered systems. We focus on uncompressed two-dimensional granular crystals with interstitial spherical intruders and composite hexagonal packings and study their dynamic response using a combination of experimental, numerical and analytical techniques. We first investigate the interaction of defect particles with a solitary wave and utilize this fundamental knowledge in the optimal design of novel composite wave guides, shock or vibration absorbers obtained using gradient-based optimization methods.
机译:粒状晶体是弹性制品在赫兹接触中的紧凑周期性组件,其动态响应可通过添加静态预压缩力而从强非线性调整为线性。此独特功能允许进行广泛的研究,包括研究离散系统中新的基本非线性现象,例如孤波,冲击波,离散通气和其他缺陷模式。在没有预压缩的情况下,这些系统的一个特别有趣的特性是它们支持具有高度可调特性的空间局部孤子状波的形成和传播的能力。人们可以修改的大量参数(粒度,几何形状和材料特性,晶体的周期性,静力的存在,激发的类型等)使其成为设计实际应用中的新材料的理想候选者。本文介绍了几种方法,可以通过在其他有序系统中使用异质性(间隙缺陷颗粒和材料异质性)来最佳地控制和调整应力波在粒状晶体中的传播。我们关注具有间隙球状侵入体和复合六角填充物的未压缩二维颗粒晶体,并结合实验,数值和分析技术研究其动态响应。我们首先研究缺陷粒子与孤立波的相互作用,并在基于梯度优化方法获得的新型复合波导,减震器或减振器的优化设计中利用这一基本知识。

著录项

  • 作者单位

    California Institute of Technology.;

  • 授予单位 California Institute of Technology.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 163 p.
  • 总页数 163
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号