首页> 外文学位 >The Use of a 3D Perfusion Bioreactor with Osteoblasts and Osteoblast/Endothelial Cell Co-cultures to Improve Tissue-Engineered Bone.
【24h】

The Use of a 3D Perfusion Bioreactor with Osteoblasts and Osteoblast/Endothelial Cell Co-cultures to Improve Tissue-Engineered Bone.

机译:将3D灌注生物反应器与成骨细胞和成骨细胞/内皮细胞共培养物一起使用,以改善组织工程骨。

获取原文
获取原文并翻译 | 示例

摘要

The delivery of oxygen, nutrients, and the removal of waste are essential for cellular survival. Culture systems for 3D bone tissue engineering have addressed this issue by utilizing perfusion flow bioreactors that stimulate osteogenic activity through the delivery of oxygen and nutrients by low-shear fluid flow. It is also well established that bone responds to mechanical stimulation, but may desensitize under continuous loading. While perfusion flow and mechanical stimulation are used to increase cellular survival in vitro, 3D tissue-engineered constructs face additional limitations upon in vivo implantation. As it requires significant amounts of time for vascular infiltration by the host, implants are subject to an increased risk of necrosis. One solution is to introduce tissue-engineered bone that has been pre-vascularized through the co-culture of osteoblasts and endothelial cells on 3D constructs.;It is unclear from previous studies: 1) how 3D bone tissue constructs will respond to partitioned mechanical stimulation, 2) how gene expression compares in 2D and in 3D, 3) how co-cultures will affect osteoblast activity, and 4) how perfusion flow will affect co-cultures of osteoblasts and endothelial cells. We have used an integrated approach to address these questions by utilizing mechanical stimulation, perfusion flow, and a co-culture technique to increase the success of 3D bone tissue engineering. We measured gene expression of several osteogenic and angiogenic genes in both 2D and 3D (static culture and mechanical stimulation), as well as in 3D cultures subjected to perfusion flow, mechanical stimulation and partitioned mechanical stimulation. Finally, we co-cultured osteoblasts and endothelial cells on 3D scaffolds and subjected them to long-term incubation in either static culture or under perfusion flow to determine changes in gene expression as well as histological measures of osteogenic and angiogenic activity.;We discovered that 2D and 3D osteoblast cultures react differently to shear stress, and that partitioning mechanical stimulation does not affect gene expression in our model. Furthermore, our results suggest that perfusion flow may rescue 3D tissue-engineered constructs from hypoxic-like conditions by reducing hypoxia-specific gene expression and increasing histological indices of both osteogenic and angiogenic activity. Future research to elucidate the mechanisms behind these results may contribute to a more mature bone-like structure that integrates more quickly into host tissue, increasing the potential of bone tissue engineering.
机译:氧气,营养物质的输送和废物的清除对于细胞存活至关重要。用于3D骨组织工程的培养系统通过利用灌注流生物反应器解决了这个问题,该反应器通过低剪切液流通过输送氧气和营养来刺激成骨活性。众所周知,骨骼对机械刺激有反应,但在连续负荷下可能会脱敏。虽然使用灌注流和机械刺激来提高体外细胞存活率,但3D组织工程构建的构建体在体内植入时面临其他限制。由于宿主需要大量时间进行血管浸润,因此植入物的坏死风险增加。一种解决方案是将已通过成骨细胞和内皮细胞的共培养在3D构造上进行血管形成的组织工程化骨骼引入;从先前的研究中尚不清楚:1)3D骨组织构造将如何响应分区的机械刺激; 2)基因表达在2D和3D中的比较方式; 3)共培养将如何影响成骨细胞的活性; 4)灌注流量将如何影响成骨细胞和内皮细胞的共培养。我们已经使用一种综合方法来解决这些问题,方法是利用机械刺激,灌注流和共培养技术来提高3D骨组织工程的成功率。我们在2D和3D(静态培养和机械刺激)中以及在经历灌注流,机械刺激和分区机械刺激的3D培养物中,测量了几种成骨和血管生成基因的基因表达。最后,我们在3D支架上共培养成骨细胞和内皮细胞,并在静态培养或灌注流下对其进行长期孵育,以确定基因表达的变化以及成骨和血管生成活性的组织学测量方法。 2D和3D成骨细胞培养物对剪切应力的反应不同,并且在我们的模型中分配机械刺激不会影响基因表达。此外,我们的结果表明,灌注流可通过减少缺氧特异性基因表达并增加成骨和血管生成活性的组织学指标,从缺氧样条件中拯救3D组织工程构造。阐明这些结果背后机制的未来研究可能有助于形成更成熟的骨样结构,这种结构可以更快地整合到宿主组织中,从而增加了骨组织工程学的潜力。

著录项

  • 作者

    Barron, Matthew J.;

  • 作者单位

    Michigan Technological University.;

  • 授予单位 Michigan Technological University.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 116 p.
  • 总页数 116
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:37:04

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号