首页> 外文学位 >Coupling of meso-scale mechanics and dislocation dynamics for strain localization.
【24h】

Coupling of meso-scale mechanics and dislocation dynamics for strain localization.

机译:中尺度力学和位错动力学的耦合用于应变局部化。

获取原文
获取原文并翻译 | 示例

摘要

The objective of this research is to develop a meso-scale physics-based gradient regularization method for analyzing strain localization problem. This is achieved by formulating a reproducing kernel strain regularization (RKSR) method as a generalization of gradient models in conjunction with a coupled meso-scale mechanics and dislocation dynamics formulation for characterization of length scales in the gradient models.; Firstly, a RKSR method is proposed as a mathematical generalization of gradient model for the strain localization problem. As an implicit gradient model, this approach eliminates the drawbacks of requiring non-physical boundary conditions in the conventional gradient model.; The second part of this research aims to characterize the length scales RKSR method and to identify how the continuum length scales are related to the microstructure features. This includes the development of multiple level set method for modeling grain boundary migration so as to determine the grain geometry, the multi-scale formulation for coupling of dislocation mechanics and continuum mechanics, and the characterization of material length scales in the continuum gradient model.; Modeling grain boundary migration is a challenging task in numerical simulation due to the complexity of topological changes. In this research, a multiple level set method for modeling of grain boundary migration is developed. The unique feature of this approach is its ability to naturally describe topological changes. Consideration of various driving forces and extension of this approach to multi-dimension are straightforward.; Since the classical plasticity theory has its intrinsic limitations in incorporating the mesoscale features, a multi-scale formulation for coupling dislocation dynamics and continuum mechanics in polycrystalline materials is developed. In this approach, the phenomenological hardening and flow rules in the classical plasticity theory are replaced by homogenized meso-scale material response characterized by dislocation evolution and their interactions.; Finally, an effort is devoted to bridge the properties obtained from dislocation dynamics to the length scales in the continuum gradient models. By using two coupled dislocation evolution equations, the length scales in the continuum gradient model are related to the ratio between mobile and total dislocation density, in addition to other material constants.
机译:这项研究的目的是开发一种基于中尺度物理的梯度正则化方法来分析应变局部化问题。这是通过将重现核应变正则化(RKSR)方法公式化为梯度模型的一般化,结合耦合的中尺度力学和位错动力学公式来表征梯度模型中的长度尺度来实现的。首先,针对应变局部化问题,提出了一种RKSR方法作为梯度模型的数学推广。作为隐式梯度模型,此方法消除了常规梯度模型中要求非物理边界条件的缺点。本研究的第二部分旨在表征RKSR长度尺度,并确定连续长度尺度与微观结构特征之间的关系。这包括开发用于模拟晶界迁移的多级集方法,以确定晶粒的几何形状;结合位错力学和连续体力学的多尺度公式;以及在连续体梯度模型中表征材料长度尺度。由于拓扑变化的复杂性,对晶界迁移进行建模是数值模拟中的一项艰巨任务。在这项研究中,开发了一种用于晶粒边界迁移建模的多级集方法。这种方法的独特之处在于它能够自然地描述拓扑变化。考虑各种驱动力并将这种方法扩展到多维是很简单的。由于经典可塑性理论在结合中尺度特征方面有其固有的局限性,因此开发了一种用于在多晶材料中耦合位错动力学和连续体力学的多尺度公式。在这种方法中,经典可塑性理论中的现象学硬化和流动规则被以位错演化及其相互作用为特征的均质中尺度材料响应所代替。最后,致力于将从位错动力学获得的特性桥接到连续体梯度模型中的长度尺度上。通过使用两个耦合的位错演化方程,连续谱梯度模型中的长度尺度除其他材料常数外,还与移动位错与总位错密度之比有关。

著录项

  • 作者

    Zhang, Xinwei.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Engineering Civil.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 186 p.
  • 总页数 186
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 建筑科学;工程材料学;
  • 关键词

  • 入库时间 2022-08-17 11:40:50

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号