首页> 外文学位 >Synthesis and Thermodynamic Studies of Physisorptive Energy Storage Materials.
【24h】

Synthesis and Thermodynamic Studies of Physisorptive Energy Storage Materials.

机译:物理吸附能量存储材料的合成和热力学研究。

获取原文
获取原文并翻译 | 示例

摘要

Physical adsorption of hydrogen or other chemical fuels on the surface of carbonaceous materials offers a promising avenue for energy storage applications. The addition of a well-chosen sorbent material to a compressed gas tank increases the volumetric energy density of the system while still permitting fast refueling, simplicity of design, complete reversibility, high cyclability, and low overall cost of materials. While physical adsorption is most effective at temperatures below ambient, effective storage technologies are possible at room temperature and modestly high pressure. A volumetric Sieverts apparatus was designed, constructed, and commissioned to accurately measure adsorption uptake at high pressures and an appropriate thermodynamic treatment of the experimental data is presented.;In Chapter 1, the problem of energy storage is introduced in the context of hydrogen as an ideal alternative fuel for future mobile vehicle applications, and with methane in mind as a near-term solution. The theory of physical adsorption that is relevant to this work is covered in Chapter 2. In-depth studies of two classes of materials are presented in the final chapters. Chapter 3 presents a study of the dissociative "hydrogen spillover" effect in the context of its viability as a practical hydrogen storage solution at room temperature. Chapters 4-5 deal with zeolite-templated carbon, an extremely high surface-area material which shows promise for hydrogen and methane storage applications. Studies of hydrogen adsorption at high pressure (Chapter 4) and anomalous thermodynamic properties of methane adsorption (Chapter 5) on ZTCs are presented. The concluding chapter discusses the impact of and possible future directions for this work.
机译:氢或其他化学燃料在碳质材料表面上的物理吸附为能量存储应用提供了有希望的途径。在压缩气罐中添加精选的吸附剂材料可增加系统的体积能量密度,同时仍可实现快速加油,设计简单,完全可逆性,高可循环性以及较低的材料总成本。虽然物理吸附在低于环境温度的温度下最有效,但在室温和适度高压下仍可采用有效的存储技术。设计,构造和调试了一个容积式Sieverts装置,以准确测量高压下的吸附量,并给出了对实验数据进行适当的热力学处理的方法;在第一章中,以氢作为氢的背景介绍了能量存储的问题。是未来移动车辆应用的理想替代燃料,并将甲烷作为近期解决方案。与这项工作相关的物理吸附理论在第2章中介绍。最后几章介绍了两类材料的深入研究。第3章在室温下作为实用的储氢溶液的生存力的背景下,研究了离解性“氢溢出”效应。第4-5章讨论了以沸石为模板的碳,这是一种极高的表面积材料,显示出可用于氢气和甲烷存储的前景。提出了在ZTCs上高压下氢吸附(第4章)和甲烷吸附的异常热力学性质(第5章)的研究。最后一章讨论了这项工作的影响和未来的方向。

著录项

  • 作者

    Stadie, Nicholas.;

  • 作者单位

    California Institute of Technology.;

  • 授予单位 California Institute of Technology.;
  • 学科 Chemistry Physical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 194 p.
  • 总页数 194
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号