首页> 外文学位 >Uncovering the Transcription Factor Network Underlying Mammalian Sex Determination.
【24h】

Uncovering the Transcription Factor Network Underlying Mammalian Sex Determination.

机译:发现哺乳动物性别决定基础的转录因子网络。

获取原文
获取原文并翻译 | 示例

摘要

Understanding transcriptional regulation in development and disease is one of the central questions in modern biology. The current working model is that Transcription Factors (TFs) combinatorially bind to specific regions of the genome and drive the expression of groups of genes in a cell-type specific fashion. In organisms with large genomes, particularly mammals, TFs bind to enhancer regions that are often several kilobases away from the genes they regulate, which makes identifying the regulators of gene expression difficult. In order to overcome these obstacles and uncover transcriptional regulatory networks, we used an approach combining expression profiling and genome-wide identification of enhancers followed by motif analysis. Further, we applied these approaches to uncover the TFs important in mammalian sex determination.;Using expression data from a panel of 19 human cell lines we identified genes showing patterns of cell-type specific up-regulation, down-regulation and constitutive expression. We then utilized matched DNase-seq data to assign DNase Hypersensitivity Sites (DHSs) to each gene based on proximity. These DHSs were scanned for matches to motifs and compiled to generate scores reflecting the presence of TF binding sites (TFBSs) in each gene's putative regulatory regions. We used a sparse logistic regression classifier to classify differentially regulated groups of genes. Comparing our approach to proximal promoter regions, we discovered that using sequence features in regions of open chromatin provided significant performance improvement. Crucially, we discovered both known and novel regulators of gene expression in different cell types. For some of these TFs, we found cell-type specific footprints indicating direct binding to their cognate motifs.;The mammalian gonad is an excellent system to study cell fate determination processes and the dynamic regulation orchestrated by TFs in development. At embryonic day (E) 10.5, the bipotential gonad initiates either testis development in XY embryos, or ovarian development in XX embryos. Genetic studies over the last 3 decades have revealed about 30 genes important in this process, but there are still significant gaps in our understanding. Specifically, we do not know the network of TFs and their specific combinations that cause the rapid changes in gene expression observed during gonadal fate commitment. Further, more than half the cases of human sex reversal are as yet unexplained.;To apply the methods we developed to identify regulators of gene expression to the gonad, we took two approaches. First, we carried out a careful dissection of the transcriptional dynamics during gonad differentiation in the critical window between E11.0 and E12.0. We profiled the transcriptome at 6 equally spaced time points and developed a Hidden Markov Model to reveal the cascades of transcription that drive the differentiation of the gonad. Further, we discovered that while the ovary maintains its transcriptional state at this early stage, concurrent up- and down-regulation of hundreds of genes are orchestrated by the testis pathway. Further, we compared two different strains of mice with differential susceptibility to XY male-to-female sex reversal. This analysis revealed that in the C57BL/6J strain, the male pathway is delayed by ∼5 hours, likely explaining the increased susceptibility to sex reversal in this strain. Finally, we validated the function of Lmo4, a transcriptional co-factor up-regulated in XY gonads at E11.6 in both strains. RNAi mediated knockdown of Lmo4 in primary gonadal cells led to the down-regulation of male pathway genes including key regulators such as Sox9 and Fgf9.;To find the enhancers in the XY gonad, we conducted DNase-seq in E13.5 XY supporting cells. In addition, we conducted ChIP-seq for H3K27ac, a mark correlated with active enhancer activity. Further, we conducted motif analysis to reveal novel regulators of sex determination. Our work is an important step towards combining expression and chromatin profiling data to assemble transcriptional networks and is applicable to several systems.
机译:了解发育和疾病中的转录调控是现代生物学的中心问题之一。当前的工作模型是转录因子(TFs)组合结合到基因组的特定区域,并以细胞类型的特定方式驱动基因组的表达。在具有大型基因组的生物体中,特别是哺乳动物,TFs会与增强子区域结合,而增强子区域通常距离它们调控的基因几千个碱基,这使得鉴定基因表达的调控子变得困难。为了克服这些障碍并发现转录调控网络,我们使用了将表达谱和增强子全基因组识别相结合,然后进行基序分析的方法。此外,我们应用了这些方法来揭示在哺乳动物性别确定中重要的TF。使用来自19个人类细胞系的表达数据,我们鉴定了显示细胞类型特异性上调,下调和组成型表达模式的基因。然后,我们利用匹配的DNase-seq数据根据邻近度将DNase超敏性位点(DHS)分配给每个基因。对这些DHS进行扫描以查找与基序的匹配,并进行编译以生成分数,以反映每个基因推定的调控区中TF结合位点(TFBS)的存在。我们使用稀疏逻辑回归分类器对基因的差异调节组进行分类。将我们的方法与近端启动子区域进行比较,我们发现在开放染色质区域中使用序列特征可显着改善性能。至关重要的是,我们发现了不同细胞类型中基因表达的已知和新型调节因子。对于其中的某些TF,我们发现了细胞类型的特定足迹,表明它们直接关联到它们的同源基序。哺乳动物性腺是研究细胞命运确定过程和TF在发育过程中精心策划的动态调控的出色系统。在胚胎第(E)10.5天,双能性腺启动XY胚胎中睾丸的发育或XX胚胎中卵巢的发育。在过去的30年中,遗传学研究已经揭示了大约30个在此过程中很重要的基因,但我们的理解仍然存在巨大差距。具体而言,我们不知道TF及其特定组合的网络会导致性腺命运承诺期间观察到的基因表达快速变化。此外,尚有超过一半的人类性逆转案例无法解释。为了将我们开发的用于鉴定性腺中基因表达调控因子的方法应用了两种方法。首先,我们在E11.0和E12.0之间的临界窗口中对性腺分化过程中的转录动力学进行了仔细的解剖。我们在6个等距的时间点对转录组进行了分析,并开发了一个隐马尔可夫模型以揭示驱动性腺分化的转录级联。此外,我们发现,虽然卵巢在此早期阶段保持其转录状态,但同时通过睾丸途径协调了数百种基因的同时上调和下调。此外,我们比较了两种不同品系的小鼠对XY男女性别逆转的敏感性不同。该分析表明,在C57BL / 6J菌株中,雄性途径延迟了约5个小时,这可能解释了该菌株对性逆转的敏感性增加。最后,我们验证了Lmo4的功能,这是两种菌株中E11.6处XY性腺中上调的转录辅因子。 RNAi介导的原代性腺细胞Lmo4的敲低导致男性途径基因的下调,包括Sox9和Fgf9等关键调控因子。为了寻找XY性腺中的增强子,我们在E13.5 XY支持细胞中进行了DNase-seq。 。此外,我们对H3K27ac进行了ChIP-seq,H3K27ac是与主动增强子活性相关的标记。此外,我们进行了主题分析,揭示了性别决定的新型调节因子。我们的工作是朝着将表达和染色质图谱数据相结合以组装转录网络的重要一步,适用于多个系统。

著录项

  • 作者

    Natarajan, Anirudh.;

  • 作者单位

    Duke University.;

  • 授予单位 Duke University.;
  • 学科 Molecular biology.;Bioinformatics.;Developmental biology.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 256 p.
  • 总页数 256
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号