首页> 外文学位 >Numerical analysis of the temporal and spatial instabilities on an annular liquid jet.
【24h】

Numerical analysis of the temporal and spatial instabilities on an annular liquid jet.

机译:环形液体射流的时间和空间不稳定性的数值分析。

获取原文
获取原文并翻译 | 示例

摘要

A numerical study of the temporal and spatial instabilities appearing on the interface of an annular liquid jet emerging from an orifice and flowing into a high pressure gas medium has been performed using Direct Numerical Simulation. The purpose of this study is to gain a better insight into the dominant mechanisms in the atomization of annular liquid jets during the start-up portion of the injection. The effects on the growth rate and wavelength of the emerging Kelvin-Helmholtz and Rayleigh-Taylor instabilities of various flow parameters have been investigated: the Reynolds and Weber numbers; fluids properties like gas-to-liquid density and viscosity ratios; and geometrical parameters involved in the problem such as thickness-to-diameter ratio of the liquid sheet. The Reynolds numbers used in this study are in the range from 3,000 to 30,000, and the Weber numbers are in the range of 6,000 up to 150,000. The convergence rate and length of the liquid jet has been also computed and compared for different cases. A characteristic convergence time has been proposed based on the obtained results. Use has been made of an unsteady axisymmetric code with a finite-volume solver of the Navier-Stokes equations for liquid streams and adjacent gas and a level-set method for the liquid/gas interface tracking.;Two significant velocity reversals were detected on the axis of symmetry for all flow Reynolds numbers; the one closer to the nozzle exit being attributed to the recirculation zone, and the one farther downstream corresponding to the annular jet collapse on the centerline. The effects of different flow parameters on the location of these velocity reversals are studied. The results indicate that the convergence length and time increase significantly with the gas density and liquid viscosity and decrease with the liquid sheet thickness, while the effects of the gas viscosity and the surface tension are not so considerable.;The range of unstable Kelvin-Helmholtz and Rayleigh-Taylor wavelengths have been also studied. The statistical data obtained from the numerical results show that, the average normalized wavelength of the KH instabilities decreases with the Reynolds and Weber numbers and the sheet thickness, and increases with the gas-to-liquid density ratio, and is independent of the viscosity ratio. The wavelength of the KH instabilities were observed to increase in time, except for the very thin liquid sheet, where the average KH wavelength oscillates between two values, indicating occurrence of different sheet breakup cycles. The sheet breakup times and lengths were reported up to the second sheet breakup, and it is shown that the later sheet breakups happen closer to the nozzle exit plane. The RT wavelengths tend to decrease during the start-up period of injection.
机译:已经使用直接数值模拟对出现在从孔口流出并流入高压气体介质的环形液体射流的界面上出现的时间和空间不稳定性进行了数值研究。这项研究的目的是为了更好地了解注射开始阶段环形液体射流雾化的主要机理。研究了各种流动参数对新兴Kelvin-Helmholtz和Rayleigh-Taylor不稳定性的生长速率和波长的影响:雷诺数和韦伯数;流体性质,例如气液密度和粘度比;以及涉及该问题的几何参数,例如液体片的厚度与直径之比。本研究中使用的雷诺数在3,000到30,000之间,韦伯数在6,000到150,000之间。还计算了液体射流的收敛速度和长度,并针对不同情况进行了比较。基于获得的结果,提出了特征收敛时间。已使用非定常的轴对称代码以及用于流体流和相邻气体的Navier-Stokes方程的有限体积求解器和用于液/气界面跟踪的水平集方法。所有流动雷诺数的对称轴;一个更靠近喷嘴出口的区域归因于再循环区域,而更下游的一个区域对应于环形射流在中心线上塌陷。研究了不同流量参数对这些速度反转位置的影响。结果表明,收敛长度和收敛时间随气体密度和液体粘度的增加而显着增加,而随着液膜厚度的增加而减小,而气体粘度和表面张力的影响不那么显着。Kelvin-Helmholtz的不稳定范围还研究了瑞利-泰勒波长。从数值结果获得的统计数据表明,KH不稳定性的平均归一化波长随雷诺数和韦伯数以及片材厚度而减小,随气液密度比而增加,并且与粘度比无关。观察到KH不稳定性的波长随时间增加,除了非常薄的液体片材外,其中平均KH波长在两个值之间振荡,表明发生了不同的片材破裂周期。报告了纸张破裂的时间和长度,直到第二次纸张破裂为止,并且显示出以后的纸张破裂发生在靠近喷嘴出口平面的位置。在注射的启动期间,RT波长趋于减小。

著录项

  • 作者

    Zandian, Arash.;

  • 作者单位

    University of California, Irvine.;

  • 授予单位 University of California, Irvine.;
  • 学科 Mechanical engineering.;Aerospace engineering.
  • 学位 M.S.
  • 年度 2014
  • 页码 153 p.
  • 总页数 153
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号