首页> 外文学位 >Thermodynamic Perturbation Theory for Associating Fluids: Beyond First Order.
【24h】

Thermodynamic Perturbation Theory for Associating Fluids: Beyond First Order.

机译:缔合流体的热力学摄动理论:超越一阶。

获取原文
获取原文并翻译 | 示例

摘要

Association interactions such as the hydrogen bond are a key component in many physical and biological systems. For this reason accurate theories are needed to describe both the thermodynamics and self-assembly of associating species. Applications of these theories range from those of industrial importance, such as equations of state for process simulations, to the realm of materials science where these theories can be used to predict how molecular structure determines the self-assembly of associating species into advanced supramolecular materials. Semi-empirical equations of state based on chemical or lattice theories do not contain the molecular level detail to make predictions on how molecular structure affects self-assembly of associating species. For this, one needs a theory whose starting point is the interaction potential between two associating species which includes this molecular level detail.;Development of accurate molecular theories for associating fluids is hampered by the strength, directionality and limited valence of the association interaction. This has proven particularly true in the extension of Mayer's cluster theory to these associating fluids. This problem was largely solved by Wertheim in the 1980's who developed an exact cluster expansion using a multi-density formalism. Wertheim's cluster theory incorporates the geometry of the association interaction at an early point in the derivation. This allowed Wertheim to develop the theory in such a way that accurate and simple approximation methods could be applied such as thermodynamic perturbation theory (TPT). When treated at first order in perturbation (TPT1), Wertheim's theory gives a simple and general equation of state which forms the basis of the statistical associating fluid theory (SAFT) free energy model. SAFT has been become a standard in both academia and industry as an equation of state for associating (hydrogen bonding) fluids. While simple in form and widely applied, the development of TPT1 rest on a number of, sometimes severe, simplifying assumptions: no interaction between associated clusters beyond that of the reference fluid, association sites are singly bondable, no double bonding of molecules, no cycles of association bonds, no steric hindrance between association sites, association is independent of bond angle and there is no bond cooperativity. The purpose of this dissertation is to relax these assumptions.;Chapters 2--4 extend TPT to allow for multiple bonds per association site. Chapter 2 focuses on the case of associating spheres with a doubly bondable association site as a model for patchy colloids with a multiply bondable patch. Chapters 3--4 extend TPT to associating mixtures of spheres where the first component has directional association sites and the second component has spherically symmetric association sites. This theory is applicable as a model for mixtures of patchy and spherically symmetric colloids and ion-water association.;Chapters 5--6 extend TPT to account for the effect of relative association site location. In chapter 5 the case of associating hard spheres with two association sites is considered. For this case the angle between the centers of the association sites (bond angle) is treated as a independent variable. This is the first application of TPT which has included the effect of bond angle. It is shown that as bond angle is decreased the effects of steric hindrance, ring (cycle) formation and eventually double bonding of molecules must be accounted for. The developed theory accounts for each of these higher order interactions as a function of bond angle. The resulting theory is shown to be accurate over the full bond angle range for both the distribution of cluster types (chains, rings, double bonded) as well as the equation of state. In chapter 6 this theory is extended to the case there are more than two association sites.;In chapter 7 TPT is extended to account for hydrogen bond cooperativity for the case of molecules with two association sites. The derived theory is shown to be highly accurate for molecules which exhibit positive or negative hydrogen bond cooperativity. Finally, in chapter 8 the case of associating fluids in spatially uniform orienting external fields is considered. An example system for this case would be associating dipolar molecules in a uniform electric field. By employing classical density functional theory in the canonical ensemble exact results are obtained for the orientational distribution function. These exact results contain the monomer fraction which must be approximated in TPT1. The resulting theory is in good agreement with simulation data for the prediction of the effect of a linear orienting field on the chain length and orientation of associated chains of spheres with two association sites.
机译:缔合相互作用(例如氢键)是许多物理和生物系统中的关键组成部分。因此,需要准确的理论来描述缔合物种的热力学和自组装。这些理论的应用范围很广,从具有工业重要性的那些方法(例如过程模拟的状态方程)到材料科学领域,在这些领域中,这些理论可用于预测分子结构如何决定缔合物种与高级超分子​​材料的自组装。基于化学或晶格理论的半经验状态方程不包含分子水平的详细信息,无法预测分子结构如何影响缔合物种的自组装。为此,需要一种理论,其出发点是两个缔合物质之间的相互作用势,其中包括该分子水平的细节。缔合流体的精确分子理论的发展受到缔合相互作用的强度,方向性和有限价态的阻碍。在将Mayer的簇理论扩展到这些缔合流体方面,事实证明尤其如此。这个问题在1980年代由Wertheim很大程度上解决了,他使用多密度形式主义发展了精确的聚类扩展。韦特海姆(Wertheim)的聚类理论在推导的早期就结合了关联相互作用的几何形状。这使Wertheim得以发展该理论,从而可以应用诸如热力学扰动理论(TPT)之类的准确而简单的近似方法。当对扰动(TPT1)进行一阶处理时,沃特海姆理论给出了一个简单而通用的状态方程,该方程构成了统计缔合流体理论(SAFT)自由能模型的基础。 SAFT已作为结合(氢键)流体的状态方程,已经成为学术界和工业界的标准。尽管TPT1的形式简单并得到广泛应用,但它的开发基于许多有时甚至是严格的简化假设:关联簇之间没有超出参考流体的相互作用,缔合位点可单独键合,分子没有双键,没有循环对于缔合键,缔合位点之间没有空间位阻,缔合独立于键角,并且不存在键合作性。本文的目的是放松这些假设。2--4章扩展了TPT以允许每个缔合位点具有多个键。第2章重点讨论将球体与可双键关联的位点关联的情况,将其作为具有可多次键合的斑片的胶体模型。第3--4章将TPT扩展到球的混合物的关联,其中第一组分具有方向性缔合位点,第二组分具有球状对称缔合位点。该理论可作为斑块状和球形对称胶体与离子水缔合混合物的模型。第5-6章扩展了TPT以说明相对缔合位点位置的影响。在第5章中,考虑了将硬球与两个关联位置关联的情况。对于这种情况,关联位点中心之间的角度(键角)被视为独立变量。这是TPT的第一个应用,它已经包括了键角的影响。结果表明,随着键角的减小,必须考虑空间位阻,环(环)的形成以及最终分子的双键的影响。发达的理论将这些高阶相互作用中的每一个作为键角的函数进行了解释。结果表明,对于簇类型(链,环,双键)以及状态方程的分布,理论在整个键角范围内都是准确的。在第6章中,该理论扩展到存在两个以上缔合位点的情况。在第7章中,TPT扩展为考虑具有两个缔合位点的分子的氢键协同作用。对于具有正或负氢键协同作用的分子,显示出派生的理论是高度准确的。最后,在第8章中,考虑了在空间均匀定向的外部场中关联流体的情况。这种情况的示例系统是在均匀电场中缔合偶极分子。通过在典范合奏中使用经典密度泛函理论,可以获得定向分布函数的准确结果。这些精确的结果包含必须在TPT1中近似的单体比例。所得理论与用于预测线性取向场对具有两个缔合位点的球的关联链的链长和取向的影响的模拟数据非常吻合。

著录项

  • 作者

    Marshall, Bennett D.;

  • 作者单位

    Rice University.;

  • 授予单位 Rice University.;
  • 学科 Chemical engineering.;Condensed matter physics.;Physical chemistry.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 172 p.
  • 总页数 172
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号