首页> 外文学位 >Lossy transmission line modeling and simulation using special functions.
【24h】

Lossy transmission line modeling and simulation using special functions.

机译:使用特殊功能的有损传输线建模和仿真。

获取原文
获取原文并翻译 | 示例

摘要

A new algorithm for modeling and simulation of lossy interconnect structures modeled by transmission lines with Frequency Independent Line Parameters (FILP) or Frequency Dependent Line Parameters (FDLP) is developed in this research. Since frequency-dependent RLGC parameters must be employed to correctly model skin effects and dielectric losses for high-performance interconnects, we first study the behaviors of various lossy interconnects that are characterized by FILP and FDLP. Current general macromodeling methods and Model Order Reduction (MOR) algorithms are discussed. Next, some canonical integrals that are associated with transient responses of lossy transmission lines with FILP are presented. By using contour integration techniques, these integrals can be represented as closed-form expressions involving special functions, i.e., Incomplete Lipshitz-Hankel Integrals (ILHIs) and Complementary Incomplete Lipshitz-Hankel Integrals (CILHIs). Various input signals, such as ramp signals and the exponentially decaying sine signals, are used to test the expressions involving ILHIs and CILHIs. Excellent agreements are observed between the closed-form expressions involving ILHIs and CILHIs and simulation results from commercial simulation tools. We then developed a frequency-domain Dispersive Hybrid Phase-Pole Macromodel (DHPPM) for lossy transmission lines with FDLP, which consists of a constant RLGC propagation function multiplied by a residue series. The basic idea is to first extract the dominant physical phenomenology by using a propagation function in the frequency domain that is modeled by FILP. A rational function approximation is then used to account for the remaining effects of FDLP lines. By using a partial fraction expansion and analytically evaluating the required inverse Fourier transform integrals, the time-domain DHPPM can be decomposed as a sum of canonical transient responses for lines with FILP for various excitations (e.g., trapezoidal and unit-step). These canonical transient responses are then expressed analytically as closed-form expressions involving ILHIs, CILHIs, and Bessel functions. The DHPPM simulator can simulate transient results for various input waveforms on both single and coupled interconnect structures. Comparisons between the DHPPM results and the results produced by commercial simulation tools like HSPICE and a numerical Inverse Fast Fourier Transform (IFFT) show that the DHPPM results are very accurate.
机译:本研究开发了一种新的算法,用于有损互连结构的建模和仿真,该算法由具有频率独立线路参数(FILP)或频率相关线路参数(FDLP)的传输线建模。由于必须使用频率相关的RLGC参数来正确建模高性能互连的趋肤效应和介电损耗,因此我们首先研究以FILP和FDLP为特征的各种有损互连的行为。讨论了当前的通用宏建模方法和模型降阶(MOR)算法。接下来,介绍了一些与有损传输线的FILP瞬态响应相关的规范积分。通过使用轮廓积分技术,这些积分可以表示为涉及特殊功能的闭式表达式,即不完全Lipshitz-Hankel积分(ILHIs)和互补不完全Lipshitz-Hankel积分(CILHIs)。各种输入信号(例如斜坡信号和指数衰减的正弦信号)用于测试涉及ILHI和CILHI的表达式。在涉及ILHI和CILHI的闭式表达式与商业仿真工具的仿真结果之间观察到极好的协议。然后,我们为具有FDLP的有损传输线开发了频域色散混合相极宏模型(DHPPM),该模型由恒定RLGC传播函数乘以残差序列组成。基本思想是首先通过使用FILP建模的频域中的传播函数来提取主要的物理现象学。然后,使用有理函数逼近来说明FDLP线的其余影响。通过使用部分分数展开并分析所需的傅立叶逆变换积分,可以将时域DHPPM分解为FILP线对于各种激励(例如梯形和单位步长)的规范瞬态响应的总和。然后,将这些规范的瞬态响应解析地表示为涉及ILHI,CILHI和Bessel函数的闭式表达式。 DHPPM仿真器可以在单个和耦合的互连结构上模拟各种输入波形的瞬态结果。 DHPPM结果与商业仿真工具(如HSPICE)和数值快速傅里叶逆变换(IFFT)产生的结果之间的比较表明,DHPPM结果非常准确。

著录项

  • 作者

    Zhong, Bing.;

  • 作者单位

    The University of Arizona.;

  • 授予单位 The University of Arizona.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 171 p.
  • 总页数 171
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号