首页> 外文学位 >Biological network models for inferring mechanism of action, characterizing cellular phenotypes, and predicting drug response.
【24h】

Biological network models for inferring mechanism of action, characterizing cellular phenotypes, and predicting drug response.

机译:用于推断作用机制,表征细胞表型和预测药物反应的生物网络模型。

获取原文
获取原文并翻译 | 示例

摘要

A primary challenge in the analysis of high-throughput biological data is the abundance of correlated variables. A small change to a gene's expression or a protein's binding availability can cause significant downstream effects. The existence of such chain reactions presents challenges in numerous areas of analysis. By leveraging knowledge of the network interactions that underlie this type of data, we can often enable better understanding of biological phenomena. This dissertation will examine network-based statistical approaches to the problems of mechanism-of-action inference, characterization of gene expression changes, and prediction of drug response.;First, we develop a method for multi-target perturbation detection in multi-omics biological data. We estimate a joint Gaussian graphical model across multiple data types using penalized regression, and filter for network effects. Next, we apply a set of likelihood ratio tests to identify the most likely site of the original perturbation. We also present a conditional testing procedure to allow for detection of secondary perturbations.;Second, we address the problem of characterization of cellular phenotypes via Bayesian regression in the Gene Ontology (GO). In our model, we use the structure of the GO to assign changes in gene expression to functional groups, and to model the covariance between these groups. In addition to describing changes in expression, we use these functional activity estimates to predict the expression of unobserved genes. We further determine when such predictions are likely to be inaccurate by identifying GO terms with poor agreement to gene-level estimates. In a case study, we identify GO terms relevant to changes in the growth rate of S. cerevisiae..;Lastly, we consider the prediction of drug sensitivity in cancer cell lines based on pathway-level activity estimates from ASSIGN, a Bayesian factor analysis model. We use penalized regression to predict response to various cancer treatments based on cancer subtype, pathway activity, and 2-way interactions thereof. We also present network representations of these interaction models and examine common patterns in their structure across treatments.
机译:高通量生物数据分析的主要挑战是相关变量的丰富性。基因表达或蛋白质结合可用性的微小变化会引起明显的下游影响。这种连锁反应的存在在许多分析领域提出了挑战。通过利用作为此类数据基础的网络交互的知识,我们通常可以更好地理解生物现象。本论文将探讨基于网络的统计方法,以解决作用机理推断,基因表达变化表征和药物反应预测的问题。首先,我们开发了一种用于多组学生物学中多目标扰动检测的方法。数据。我们使用惩罚回归估计跨多种数据类型的联合高斯图形模型,并过滤网络效应。接下来,我们应用一组似然比检验来确定原始扰动的最可能位置。我们还提出了一种条件测试程序,以允许检测二次扰动。第二,我们通过基因本体论(GO)中的贝叶斯回归解决细胞表型表征的问题。在我们的模型中,我们使用GO的结构将基因表达的变化分配给功能组,并为这些组之间的协方差建模。除了描述表达的变化外,我们使用这些功能活性估计值来预测未观察到的基因的表达。我们通过鉴定与基因水平的估计不一致的GO术语进一步确定何时这种预测可能不准确。在一个案例研究中,我们确定了与酿酒酵母生长速率变化有关的GO术语;最后,我们根据贝叶斯因子分析(ASSIGN)的ASSIGN途径水平活性估计,考虑了癌细胞系中药物敏感性的预测模型。我们使用惩罚回归来基于癌症亚型,途径活性及其2向相互作用预测对各种癌症治疗的反应。我们还介绍了这些相互作用模型的网络表示形式,并检查了各种治疗方法中其结构的常见模式。

著录项

  • 作者

    Griffin, Paula J.;

  • 作者单位

    Boston University.;

  • 授予单位 Boston University.;
  • 学科 Biostatistics.;Statistics.;Bioinformatics.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 124 p.
  • 总页数 124
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号