首页> 外文学位 >Numerical simulation and axial stability analysis of vertical slug flow.
【24h】

Numerical simulation and axial stability analysis of vertical slug flow.

机译:垂直段塞流的数值模拟和轴向稳定性分析。

获取原文
获取原文并翻译 | 示例

摘要

The first part of this dissertation describes some results of a numerical simulation of vertical axisymmetric slug flow based on a front-tracking method. The liquid phase is considered incompressible. The gas phase is assumed inviscid and massless. The interface is represented as a list of marker points convected with the local liquid velocity. The bubble rising velocities, shapes, and flow field structures around the bubble nose and tail were investigated over a wide range of fluid properties and under different imposed flow rates or pressure drops.; Both single bubbles and trains of bubbles periodic in the vertical direction were investigated. For the periodic case, it is found that the bubble rising velocity remains steady even when the bubbles have an oscillating tail or a wavy interface. The rising velocity seems to be governed only by the flow in the neighborhood of the bubble nose.; For a single bubble, the sudden expansion due to a sudden pressure drop on the tube ends was simulated. In this case as well it is found that the rising velocity of the bubble is decided solely by the hydrodynamics of the nose, and is not affected by the wake.; The second part of the dissertation presents a linear analysis of the axial stability of the large bubbles encountered in slug flow. The breaking of the axial symmetry in counter-current flowing liquid was identified by solving an eigenvalue problem for two different unperturbed axisymmetric flows, an inviscid rotational flow and a potential flow. For both flows a small interface perturbation and an irrotational velocity perturbation corresponding to the symmetry-breaking mode are imposed. It is found that, under the combined effect of gravity and the pressure gradient which drives the liquid flow, the relative velocity between the bubble and the liquid decreases with increasing downflow, which diminishes the stabilizing effect of convection. The decrease of the relative velocity is accompanied by a flattening of the bubble nose, which also has a destabilizing effect.
机译:本文的第一部分描述了基于前跟踪方法的垂直轴对称弹团流动数值模拟的一些结果。液相被认为是不可压缩的。气相被认为是无粘性且无质量的。该界面表示为与局部液体速度对流的标记点列表。在广泛的流体性质和不同的施加流速或压降下,研究了气泡鼻翼和尾巴周围的气泡上升速度,形状和流场结构。研究了单个气泡和在垂直方向上周期性的气泡序列。对于周期性情况,发现即使气泡具有振荡的尾部或波浪状界面,气泡的上升速度也保持稳定。上升的速度似乎仅受气泡鼻附近流动的支配。对于单个气泡,模拟了由于管端压力突然下降而导致的突然膨胀。同样在这种情况下,发现气泡的上升速度完全由鼻子的流体动力学决定,而不受尾流的影响。论文的第二部分对在团状流中遇到的大气泡的轴向稳定性进行了线性分析。通过解决两种不同的无扰动轴对称流,无粘性旋转流和势流的特征值问题,确定了逆流流动液体中轴向对称性的破坏。对于这两种流动,都施加了较小的界面扰动和对应于对称破坏模式的无旋转速度扰动。发现在重力和驱动液体流动的压力梯度的共同作用下,气泡和液体之间的相对速度随着向下流动的增加而减小,这削弱了对流的稳定作用。相对速度的降低伴随着气泡鼻的变平,这也具有去稳定作用。

著录项

  • 作者

    Lu, Xiaozhen.;

  • 作者单位

    The Johns Hopkins University.;

  • 授予单位 The Johns Hopkins University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 142 p.
  • 总页数 142
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号