首页> 外文学位 >Contact induced micro-plasticity near surface: A novel boundary element technique.
【24h】

Contact induced micro-plasticity near surface: A novel boundary element technique.

机译:接触引起的表面附近的微塑性:一种新颖的边界元技术。

获取原文
获取原文并翻译 | 示例

摘要

Contact induced micro-surface plasticity is of crucial importance in many applications, such as surface treatment via severe plastic deformation. A clear understanding of the evolution of dislocation structure near the surface and the mutual interactions among neighboring asperities is important in understanding micro-surface plasticity. In this dissertation, rough surfaces under contact are analyzed using a discrete dislocation model.;A new Boundary Element Method (BEM) that takes into consideration singular fields due to dislocations is derived to solve the boundary value problem. At the heart of this method, a complex variable boundary integral equation that is weakly singular. First order singular integral equations capable of measuring stresses accurately close to the surface are developed. The new method offers a unified approach where two-dimensional discrete dislocation boundary value problems are solved directly in a similar fashion as in two-dimensional elasticity.;Using the new technique, indentation of single crystals with rough surfaces by flat contacts is analyzed. Simulation results show the size effect where it is very hard to yield small size asperities. If only surface sources are activated, dislocations nucleated form surface-steps exhibit different behavior depending on the asperity width and spacing. For asperities of small widths and large spacing, dislocations nucleated from surface-steps form dipolar bands within which materials are inserted from the surface leading to the formation of zones with high compressive stresses. For asperities of large widths, dislocations nucleated form the surface segregate into anti-load and pro-load dislocations. Anti-load dislocations pile up under the surface leading to the formation of tensile spots at the edges of the asperities. When bulk material yields dislocations nucleated from bulk sources glide towards the surface and relieve the high compressive stresses that may develop within the shear bands. Also, they block the motion of dislocations nucleated from the surface making it harder for subsequent dislocations to nucleate from surface asperities. For small asperity width to asperity spacing ratios, a large material pileup is observed on both sides of the asperity. For big ratios, deformation mode is similar to that of a plane strain compressions. Between these two modes materials experience shear band deformation.
机译:接触诱导的微表面可塑性在许多应用中至关重要,例如通过严重的塑性变形进行表面处理。清楚地了解表面附近位错结构的演变以及邻近的凹凸不平之间的相互作用对于理解微观表面可塑性至关重要。本文采用离散位错模型对接触下的粗糙表面进行了分析。提出了一种新的边界元方法(BEM),该方法考虑了位错引起的奇异场,从而解决了边值问题。该方法的核心是弱奇异的复杂变量边界积分方程。建立了能够精确测量靠近表面应力的一阶奇异积分方程。该新方法提供了一种统一的方法,可以以类似于二维弹性的方式直接解决二维离散位错边界值问题。使用该新技术,分析了具有平坦表面的粗糙单晶接触的压痕。仿真结果显示了尺寸效应,很难产生小尺寸的凹凸。如果仅激活表面源,则根据粗糙宽度和间距,从表面台阶成核的位错将表现出不同的行为。对于较小的宽度和较大的间距,由表面台阶形核的位错形成偶极带,材料从表面插入其中,导致形成具有高压缩应力的区域。对于大宽度的凹凸不平,位错从表面形核,分为反荷位错和前荷位错。抗载荷位错在表面之下堆积,导致在粗糙边缘处形成拉伸点。当散装材料屈服时,由散装源产生的位错会滑向表面,并缓解剪切带内可能产生的高压缩应力。而且,它们阻止了从表面成核的位错的运动,从而使后续的位错从表面粗糙处脱核的难度更大。对于较小的粗糙宽度与粗糙间距比,在粗糙的两面都观察到较大的材料堆积。对于较大的比率,变形模式类似于平面应变压缩的模式。在这两种模式之间,材料会经历剪切带变形。

著录项

  • 作者

    Diab, Mazen.;

  • 作者单位

    City University of New York.;

  • 授予单位 City University of New York.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 138 p.
  • 总页数 138
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号