首页> 外文学位 >Neural field dynamics under variation of local and global connectivity and finite transmission speeds.
【24h】

Neural field dynamics under variation of local and global connectivity and finite transmission speeds.

机译:在局部和全局连接以及有限的传输速度变化下的神经场动力学。

获取原文
获取原文并翻译 | 示例

摘要

Spatially continuous networks with heterogeneous connections are ubiquitous in biological systems, in particular neural systems. To understand the mutual effects of locally homogeneous and globally heterogeneous connectivity, the stability of the steady state activity of a neural field as a function of its connectivity is investigated. The variation of the connectivity is operationalized through manipulation of a heterogeneous two-point connection embedded into the otherwise homogeneous connectivity matrix and by variation of connectivity strength and transmission speed. A detailed discussion of the example of the real Ginzburg-Landau equation with an embedded two-point heterogeneous connection in addition to the homogeneous coupling due to the diffusion term is performed. The system is reduced to a set of delay differential equations and the stability diagrams as a function of the time delay and the local and global coupling strengths are computed. The major finding is that the stability of the heterogeneously connected elements with a well-defined velocity defines a lower bound for the stability of the entire system. Diffusion and velocity dispersion always result in increased stability. Various other local architectures represented by exponentially decaying connectivity functions are also discussed. The analysis shows that developmental changes such as the myelination of the cortical large-scale fiber system generally result in the stabilization of steady state activity via oscillatory instabilities independent of the local connectivity. Non-oscillatory (Turing) instabilities are shown to be independent of any influences of time delay.
机译:具有异质连接的空间连续网络在生物系统,特别是神经系统中无处不在。为了理解局部同质和全局异质连接的相互影响,研究了神经场的稳态活动作为其连接函数的稳定性。连接性的变化是通过操纵嵌入在其他情况下均一的连接性矩阵中的异构两点连接以及连接性强度和传输速度的变化来实现的。除了由于扩散项导致的均匀耦合外,还对具有嵌入式两点异质连接的实Ginzburg-Landau方程的示例进行了详细讨论。将系统简化为一组延迟微分方程,并根据时间延迟来计算稳定性图,并计算出局部和全局耦合强度。主要发现是,具有明确定义的速度的异构连接的元素的稳定性为整个系统的稳定性定义了一个下限。扩散和速度分散始终会提高稳定性。还讨论了以指数衰减的连接功能表示的各种其他本地体系结构。分析表明,发展变化,例如皮质大规模纤维系统的髓鞘化,通常会通过与本地连通性无关的振荡不稳定性来稳定稳态活动。证明非振荡(转弯)不稳定性不受时间延迟的任何影响。

著录项

  • 作者

    Qubbaj, Murad R.;

  • 作者单位

    Florida Atlantic University.;

  • 授予单位 Florida Atlantic University.;
  • 学科 Biology Neuroscience.; Biophysics General.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 77 p.
  • 总页数 77
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 神经科学;生物物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号