首页> 外文学位 >Acoustic characterization of geometrically and biochemically targeted optical breakdown effects for biomedical applications.
【24h】

Acoustic characterization of geometrically and biochemically targeted optical breakdown effects for biomedical applications.

机译:用于生物医学应用的几何和生物化学靶向光学击穿效应的声学表征。

获取原文
获取原文并翻译 | 示例

摘要

Femtosecond laser-induced optical breakdown (LIOB) enables nonlinear energy deposition on micron and submicron spatial scales and has the potential to produce precise tissue effects in a number of medical and biological systems. LIOB occurs only where the breakdown threshold is exceeded, and may be manipulated both geometrically (through laser beam focusing) and biochemically (through metal/dendrimer nanocomposite (DNC) targeting) for selective photodisruption within tissues while minimizing thermal and mechanical damage to surrounding material. Measurable effects of localized breakdown, shock wave emission and microbubble formation, signal targeted areas and generate an object for sensitive acoustic detection and potential manipulation.; Experimental studies were performed to investigate femtosecond LIOB effects in transparent and semi-transparent biological material. Photodisruption at the focus of a near-infrared, ultrafast laser source was monitored using a high-frequency (≥ 50 MHz) acoustic technique. Ultrasonic recordings detected breakdown and illustrated laser-induced microbubble characteristics and dynamics. Studies in tissue-mimicking, gelatin phantoms demonstrated that laser pulse fluence, number, and period may be varied to deposit energy in a specific temporal manner, creating and stabilizing microbubbles with particular characteristics. Studies in porcine skin demonstrated that possibilities to precisely photodisrupt deeply localized areas in scattering tissue, however, are limited with geometrically targeted LIOB. The application of an index-matching agent improved penetration depth, and high numerical aperture focusing produced precise subsurface breakdown up to 150 micron focusing depths.; LIOB with biochemically targeted metal/dendrimer nanocomposites (DNCs) enables precise and selective photodisruption by locally reducing breakdown thresholds up to three orders of magnitude. Studies in DNC solutions demonstrate that DNC metal content markedly influences solution threshold reduction, while DNC terminal group (and thus net surface charge) and solution concentration influence the details of breakdown at these reduced fluences. A DNC construct targeted to the KB tumor cell line through the folate receptor successfully demonstrated targeted intracellular reduction in breakdown threshold. This research contributes to the framework for LIOB applications that precisely manipulate tissue and cells and produce a microbubble for acoustic manipulation and further therapeutic effects.
机译:飞秒激光诱导的光学击穿(LIOB)可以在微米和亚微米空间尺度上进行非线性能量沉积,并具有在许多医学和生物系统中产生精确组织效果的潜力。 LIOB仅在超过击穿阈值的地方发生,并且可以在组织中进行选择性光破裂,同时在几何上(通过激光束聚焦)和生化(通过金属/树状大分子纳米复合材料(DNC)靶向)进行操纵,同时最大程度地减少对周围材料的热损伤和机械损伤。局部击穿,冲击波发射和微气泡形成的可测量效果,将目标区域发出信号,并产生用于敏感声学检测和电位操纵的物体。进行了实验研究,以研究飞秒LIOB在透明和半透明生物材料中的作用。使用高频(≥50 MHz)声学技术监测近红外超快激光源焦点处的光破坏。超声波记录可检测到故障,并说明激光诱导的微气泡特征和动力学。对组织模拟明胶体模的研究表明,可以改变激光脉冲的通量,数量和周期,以特定的时间方式沉积能量,从而产生并稳定具有特定特征的微气泡。猪皮肤的研究表明,精确地光散射散射组织中深处局部区域的可能性受到几何靶向LIOB的限制。折射率匹配剂的使用改善了穿透深度,并且高数值孔径聚焦产生了高达150微米聚焦深度的精确的表面下击穿。具有生物化学靶向金属/树状大分子纳米复合材料(DNC)的LIOB可通过局部降低击穿阈值达三个数量级来实现精确的选择性光破碎。对DNC解决方案的研究表明,DNC中的金属含量显着影响溶液阈值的降低,而DNC端基(以及净表面电荷)和溶液浓度会影响这些降低的通量下的击穿细节。通过叶酸受体靶向KB肿瘤细胞系的DNC构建体成功证明了靶向细胞内降解阈值的降低。这项研究为LIOB应用的框架做出了贡献,该框架可精确地操纵组织和细胞,并产生微泡以用于声学操纵和进一步的治疗效果。

著录项

  • 作者

    Tse, Christine.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 156 p.
  • 总页数 156
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号