首页> 外文学位 >Controlling self-assembly and anisotropy of block copolymer materials with nanorods.
【24h】

Controlling self-assembly and anisotropy of block copolymer materials with nanorods.

机译:用纳米棒控制嵌段共聚物材料的自组装和各向异性。

获取原文
获取原文并翻译 | 示例

摘要

The detailed nanostructure of composites formed from block copolymers and nanoparticles is known to depend sensitively on the preferred morphology of the block copolymer, on the shapes of the particles, and on interactions between the two components. But it can also depend on the kinetics of self-assembly in the polymer, and there are circumstances under which the kinetics of morphologically selective domain nucleation and growth determine the overall nanostructure of the composite. To study the mechanism of morphological seeding in block copolymer nanocomposites, cylindrical polystyrene- block-polyisoprene diblock (as a solution in dibutylphthalate) and poly(styrene-block-isoprene-block-styrene) triblock (as a blend with homopolystyrene) copolymers were combined with gold nanorods of different diameters and surface treatments. Polarized optical microscopy, transmission electron microscopy, and small angle X-ray analysis on these composites demonstrate that the nanorods selectively nucleate coaxial domains of copolymer cylinders (i.e., domains of cylinders aligned along the same axis as the nanorod). These single nucleation events occur regardless of nanorod diameter and surface character, and determine the order of most of the surrounding polymer. Mesoscale modeling of the nucleation process, performed with nanorods of different diameters and with different polymer-surface interactions, illustrates the mechanism by which copolymer-dispersed nanorods with different sizes and surface chemistry can template organization of cylindrical copolymer domains.; This thesis also describes a simple method for preparing conductive films from single-wall nanotube-polymer composite materials. This approach involves a two step procedure of (1) suspending nanotubes in concentrated solutions of poly(styrene-b-isoprene-b-styrene) and tackifier resin and (2) coating the composite solutions onto polymer substrates. Films with surface resistivity values of ∼103 O/square were prepared by controlling the concentration of nanotubes in solution. The effect of mechanical deformation on the conductivity of composite films was investigated. In addition, confocal Raman microscopy was used to understand the origin of electrical conductivity in the composite films.
机译:已知由嵌段共聚物和纳米颗粒形成的复合材料的详细纳米结构敏感地取决于嵌段共聚物的优选形态,颗粒的形状以及两种组分之间的相互作用。但是,这也可能取决于聚合物中自组装的动力学,并且在某些情况下,形态选择性域成核和生长的动力学决定了复合材料的整体纳米结构。为了研究嵌段共聚物纳米复合材料中形貌的形成机理,将圆柱状聚苯乙烯-嵌段-聚异戊二烯二嵌段(邻苯二甲酸二丁酯溶液)和聚(苯乙烯-嵌段-异戊二烯-嵌段-苯乙烯)三嵌段(与均聚苯乙烯的混合物)组合在一起具有不同直径和表面处理的金纳米棒。对这些复合材料的偏振光学显微镜,透射电子显微镜和小角度X射线分析表明,纳米棒选择性地成核了共聚物圆柱体的同轴畴(即,沿着与纳米棒相同的轴排列的圆柱体的畴)。这些单个成核事件的发生与纳米棒的直径和表面特性无关,并决定了大多数周围聚合物的顺序。用不同直径的纳米棒和不同的聚合物-表面相互作用进行的成核过程的中尺度模型,说明了不同尺寸和表面化学性质的分散在共聚物中的纳米棒可以模板化圆柱形共聚物域的机制。本文还描述了一种由单壁纳米管-聚合物复合材料制备导电膜的简单方法。该方法涉及两步程序:(1)将纳米管悬浮在聚(苯乙烯-b-异戊二烯-b-苯乙烯)和增粘剂树脂的浓缩溶液中,以及(2)将复合溶液涂覆到聚合物基材上。通过控制溶液中纳米管的浓度来制备表面电阻率值为〜103 O / square的薄膜。研究了机械变形对复合膜电导率的影响。此外,共聚焦拉曼显微镜用于了解复合膜中电导率的来源。

著录项

  • 作者

    Laicer, Castro S. T.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Chemistry Polymer.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 208 p.
  • 总页数 208
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 高分子化学(高聚物);
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号