首页> 外文学位 >Coarse grained modeling of directed assembly to form functional nanoporous films.
【24h】

Coarse grained modeling of directed assembly to form functional nanoporous films.

机译:定向装配的粗粒建模,以形成功能性的纳米多孔膜。

获取原文
获取原文并翻译 | 示例

摘要

A coarse-grained (CG) simulation of polyethylene glycol (PEG) and Polymethylsilsesquixane nanoparticle (PMSSQ) referred to as (NP) at different sizes and concentrations were done using the Martini coarse-grained (CG) force field. The interactions between CG PEG and CG NP were parameterized from the chemical compound of each molecule and based on Martini force field. NP particles migrates to the surface of the substrate in an agreement with the experimental output at high temperature of 800K. This demonstration of nanoparticles-polymer film to direct it to self-assemble a systematically spatial pattern using the substrate surface energy as the key gating parameter. Validation of the model comparing molecular dynamics simulations with experimental data collected from previous study. NP interaction with the substrate at low interactions energy using Lennard-Johns potential were able to direct the NP to self-assemble in a hexagonal shape up to 4 layers above the substrate. This thesis established that substrate surface energy is a key gating parameter to direct the collective behavior of functional nanoparticles to form thin nanoporous films with spatially predetermined optical/dielectric constants.
机译:使用马蒂尼粗粒(CG)力场对聚乙二醇(PEG)和聚甲基倍半硅氧烷纳米颗粒(PMSSQ)称为(NP)在不同大小和浓度下进行了粗粒(CG)模拟。 CG PEG和CG NP之间的相互作用是根据每个分子的化合物并基于马提尼力场进行参数化的。 NP颗粒在800K高温下与实验输出一致地迁移到基板表面。纳米粒子-聚合物薄膜的演示表明,该薄膜使用基材表面能作为关键选通参数,可指导其自组装成系统的空间图案。模型验证比较了分子动力学模拟与从先前研究中收集的实验数据。使用Lennard-Johns势能在低相互作用能量下与NP相互作用,能够引导NP以六边形形状自组装,直到衬底上方最多4层。本论文确立了衬底表面能是指导功能纳米颗粒形成具有空间预定光学/介电常数的纳米多孔薄膜的关键门控参数。

著录项

  • 作者

    Al Khatib, Amir.;

  • 作者单位

    Northern Illinois University.;

  • 授予单位 Northern Illinois University.;
  • 学科 Electrical engineering.;Nanotechnology.
  • 学位 M.S.
  • 年度 2016
  • 页码 55 p.
  • 总页数 55
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号