首页> 外文学位 >The physics and optimization of organic thin film photovoltaic cells.
【24h】

The physics and optimization of organic thin film photovoltaic cells.

机译:有机薄膜光伏电池的物理特性和优化。

获取原文
获取原文并翻译 | 示例

摘要

Organic materials have the potential to provide low-cost photovoltaic devices for solar energy conversion. In this thesis, we focus on understanding the physics of organic photovoltaic cells based on small molecular weight materials, and how best to exploit that understanding to optimize device performance.; First, we explain the various processes that lead to photodetection in organic materials, and the limiting factors that contribute to the various efficiencies at each step. Then, the basic architectures for photovoltaic devices are described. These include the donor-acceptor heterojunction for efficient exciton dissociation, the exciton blocking layer, and the stacked cell. We show how the choice of materials with known energy levels affects device performance, particularly the open-circuit voltage and the short-circuit and dark current densities. The roles of each of these factors is approached from a fundamental standpoint, describing, for example, how the exciton blocking layer functions, and how surface plasmon resonances in silver clusters can enhance absorption and, therefore, device efficiency in stacked cells.; We also discuss the properties and use of both mixed donor-acceptor thin films and homogeneous layers in devices. By investigating, in detail, the material and device properties of the mixed films, we show that a tradeoff exists between reduced charge transport in the mixture and increased exciton dissociation and charge generation. Through the use of new materials, we demonstrate the ability for organic materials to harvest infrared radiation, an important step in increasing the absorption spectrum of a stacked cell. Using all of these various techniques, it is shown how record efficiencies have been achieved.
机译:有机材料具有为太阳能转换提供低成本光伏器件的潜力。在本文中,我们着重于了解基于小分子量材料的有机光伏电池的物理特性,以及如何最好地利用这种了解来优化器件性能。首先,我们解释了导致有机材料中光检测的各种过程,以及在每个步骤中导致各种效率提高的限制因素。然后,描述了光伏器件的基本架构。这些包括用于有效激子离解的供体-受体异质结,激子阻挡层和叠层单元。我们展示了选择具有已知能级的材料如何影响器件性能,特别是开路电压以及短路和暗电流密度。从基本的角度探讨了这些因素各自的作用,例如描述了激子阻挡层的功能,以及银簇中的表面等离子体激元共振如何增强吸收,从而提高了堆叠电池的器件效率。我们还将讨论混合施主-受主薄膜和均匀层在设备中的性能和用途。通过详细研究混合膜的材料和器件性能,我们表明在减少混合物中的电荷传输与增加激子离解和电荷产生之间存在折衷。通过使用新材料,我们证明了有机材料具有收集红外辐射的能力,这是增加堆叠式电池吸收光谱的重要步骤。使用所有这些各种技术,可以显示如何实现记录效率。

著录项

  • 作者

    Rand, Barry P.;

  • 作者单位

    Princeton University.;

  • 授予单位 Princeton University.;
  • 学科 Engineering Electronics and Electrical.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 186 p.
  • 总页数 186
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号