首页> 外文学位 >Control of epithelial differentiation by cell-instructive scaffolds.
【24h】

Control of epithelial differentiation by cell-instructive scaffolds.

机译:通过细胞指导性支架控制上皮分化。

获取原文
获取原文并翻译 | 示例

摘要

Rather than avoiding detection and "doing no harm," next generation biomaterials will have signals incorporated into their structure that interact with the body, enhancing healing and integration. Knowledge of appropriate ligands, receptors, signaling pathways, and target genes will allow for application specific biomaterials. In a simplified view, this bioactive system consists of a cell, a signal, and a scaffold. This project has endeavored to define each component of this scheme, leading to a bioactive scaffold that controls epithelial differentiation with direct application in percutaneous devices, tissue engineering, and wound healing. The epithelial cell is a perfect model cell-type for studying how exogenous signals influence physical and biochemical behavior. Ubiquitously expressed and associated with many disease processes, the epithelial cell has a distinct differentiation profile with phenotypic markers at each stage of the progression. As a first step towards developing a model system, rat esophageal epithelial cells were isolated and characterized for their epithelial identity, adhesion characteristics, and ability to generate an epithelium on a variety of natural and synthetic materials. One signaling pathway shown to influence epithelial differentiation is Notch. Evolutionarily conserved, Notch influences development and normal cell function in a range of species and cell types. Though normally a cell-to-cell signaling pathway, we considered an alternative possibility of using a biomaterial-immobilized Notch ligand to control epithelial differentiation. Jagged-1, a Notch ligand, was successfully immobilized to a tissue culture dish and retained its bioactivity. Plating epithelial cells on the ligand resulted in enhanced differentiation, manifested by expression of intermediate- and late-stage differentiation markers, as well as profound agglomeration and stratification. The scaffold, poly (2-hydroxyethyl methacrylate) (polyHEMA), has seen widespread use in medical applications. Its low protein adsorption, tissue-like properties, and hydroxyethyl side chain make it an excellent choice for use as a bioactive scaffold. The final aspect of this project was to modify polyHEMA with Jagged-1 to induce Notch signaling. This included various immobilization approaches (direct and indirect) and bioactive moieties (short peptide and full-length Jagged-1). After surface characterization and cell interaction studies, this bioactive construct was tested in an in vitro organ culture model for percutaneous devices.
机译:下一代生物材料将避免信号被检测到并“无害”,而是将信号整合到其结构中,从而与人体相互作用,从而促进愈合和整合。适当的配体,受体,信号传导途径和靶基因的知识将允许应用特定的生物材料。在简化视图中,该生物活性系统由细胞,信号和支架组成。该项目致力于定义该方案的每个组成部分,从而开发出一种生物活性支架,该支架可直接应用于经皮设备,组织工程和伤口愈合中,从而控制上皮的分化。上皮细胞是用于研究外源信号如何影响物理和生化行为的理想模型细胞。上皮细胞广泛表达并与许多疾病过程相关,在进展的每个阶段具有表型标记的独特分化特征。作为开发模型系统的第一步,对大鼠食道上皮细胞进行了分离,并对它们的上皮特性,粘附特性以及在各种天然和合成材料上生成上皮的能力进行了表征。显示出影响上皮分化的一种信号传导途径是Notch。 Notch在进化上是保守的,会影响一系列物种和细胞类型的发育和正常细胞功能。尽管通常是细胞间信号通路,但我们考虑了使用生物材料固定的Notch配体控制上皮分化的另一种可能性。 Jagged-1(一种Notch配体)已成功固定在组织培养皿上,并保留了其生物活性。在配体上镀上皮细胞导致分化增强,表现为中晚期分化标记物的表达,以及深度的团聚和分层。支架聚甲基丙烯酸2-羟乙酯(polyHEMA)已在医疗应用中得到广泛使用。它的低蛋白质吸附,类组织特性和羟乙基侧链使其成为用作生物活性支架的绝佳选择。该项目的最后一个方面是用Jagged-1修饰polyHEMA以诱导Notch信号传导。这包括各种固定方法(直接和间接)和生物活性部分(短肽和全长Jagged-1)。经过表面表征和细胞相互作用研究后,该生物活性构建体在体外器官培养模型中用于经皮器械测试。

著录项

  • 作者

    Beckstead, Benjamin L.;

  • 作者单位

    University of Washington.;

  • 授予单位 University of Washington.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 148 p.
  • 总页数 148
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号