首页> 外文学位 >The genetic architecture of locomotor behavior in Drosophila melanogaster.
【24h】

The genetic architecture of locomotor behavior in Drosophila melanogaster.

机译:果蝇运动行为的遗传结构。

获取原文
获取原文并翻译 | 示例

摘要

Locomotion is an integral component of most animal behaviors: movement is required for localization of food and mates, escape from predators, defense of territory, and response to stress. Many human neurological diseases (e.g., Parkinson's Disease and Huntington's Disease) are associated with locomotor deficits. Locomotion is a complex behavior, with variation in nature attributable to the joint segregation of multiple interacting quantitative trait loci (QTLs), with effects that are sensitive to the environment. Thus, understanding the genetic architecture of locomotor behavior is important from the dual perspectives of evolutionary biology and human health. However, our current knowledge falls short of the level of detail with which we ultimately seek to describe variation in locomotor behavior. We used complementary approaches in the model system Drosophila melanogaster to identify genes affecting locomotion: QTL mapping, followed by linkage disequilbrium mapping and association testing; artificial selection to derive lines for transcriptome analysis using microarrays; and P-element insertional mutagenesis to confirm the microarray results.; QTL mapping uncovered four regions that contribute to variation in locomotor reactivity (a component of locomotor behavior) between two lab stocks. Deficiency complementation mapping refined our large QTL into 12 smaller QTL, then complementation tests to mutations identified 13 positional candidate genes affecting locomotor reactivity, including Dopa decarboxylase (Ddc) and Catecholamines Up (Catsup). Linkage disequilibrium mapping in a natural population of 164 second chromosome substitution lines suggested polymorphisms at Ddc and Catsup were associated with naturally occurring genetic variation in locomotion.; Another strategy to discover genes affecting complex behaviors is to combine artificial selection for divergent phenotypes with whole genome expression profiling. Artificial selection lines created from a genetically heterogeneous background were selected for 25 generations to derive replicate lines with divergent levels of locomotor reactivity. Transcription profiling identified nearly 1,800 probe sets that were differentially expressed between the selection lines. Functional tests of P-element mutations in ten differentially expressed genes confirmed seven novel candidate genes affecting locomotion. Many of the genes identified in this study have other functions in metabolism, nervous system development, and response to different stimuli, suggesting extensive pleiotropy among the genes affecting locomotor behavior.
机译:运动是大多数动物行为不可或缺的组成部分:运动是食物和伴侣的定位,逃避食肉动物,防御领土以及对压力的反应所必需的。许多人类神经系统疾病(例如帕金森氏病和亨廷顿氏病)与运动功能障碍有关。运动是一种复杂的行为,其性质的变化可归因于多个相互作用的数量性状位点(QTL)的联合分离,其作用对环境敏感。因此,从进化生物学和人类健康的双重角度出发,了解运动行为的遗传结构非常重要。但是,我们目前的知识还不足以达到我们最终试图描述运动行为变化的详细程度。我们在果蝇果蝇模型系统中使用了互补方法来鉴定影响运动的基因:QTL作图,然后进行连锁非等位基因作图和关联测试。人工选择以衍生出用于使用微阵列进行转录组分析的品系; P元素插入诱变,以确认微阵列结果。 QTL测绘发现了两个区域,这些区域会导致两个实验室种群之间的运动反应性(运动行为的一部分)发生变化。缺陷互补图谱将我们的大QTL精炼为12个较小的QTL,然后对突变进行互补测试,确定了13个影响运动反应性的位置候选基因,包括多巴脱羧酶(Ddc)和儿茶酚胺(Catsup)。 164个第二染色体替代系的自然种群中的连锁不平衡作图表明,Ddc和Catsup的多态性与自然发生的运动遗传变异有关。发现影响复杂行为的基因的另一种策略是将针对不同表型的人工选择与全基因组表达谱相结合。从遗传异质性背景创建的人工选择品系被选择了25代,以得到具有不同水平运动反应性的复制品系。转录谱分析鉴定了将近1800个探针组,其在选择系之间差异表达。 10个差异表达基因中P元素突变的功能测试证实了影响运动的7个新候选基因。在这项研究中鉴定的许多基因在代谢,神经系统发育以及对不同刺激的反应中还具有其他功能,这表明影响运动行为的基因之间存在广泛的多效性。

著录项

  • 作者

    Jordan, Katherine Wells.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Biology Genetics.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 247 p.
  • 总页数 247
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 遗传学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号