首页> 外文学位 >Interface structure and chemistry and early-stage spinodal decomposition of dimensionally confined copper nickel iron particles embedded in sapphire.
【24h】

Interface structure and chemistry and early-stage spinodal decomposition of dimensionally confined copper nickel iron particles embedded in sapphire.

机译:嵌入蓝宝石的尺寸受限的铜镍铁颗粒的界面结构和化学性质以及早期旋节线分解。

获取原文
获取原文并翻译 | 示例

摘要

Phase transformations that occur under dimensionally confined conditions offer the possibility of obtaining fine-scale, compositionally modulated structures down to the nanoscale by combining the methods of cop-down" fabrication with "bottom-up" self-assembly processes. As the spatial scale of this constraint is reduced, the effects of interfaces and bounding surfaces assume a more dominant role in the overall energetics of the system. This study examines interface effects on the spinodal decomposition---a diffusional phase transformation---of a CuNiFe alloy embedded in an inert sapphire host matrix, and explores diffusional paths at the alloy-sapphire interface that are not available during bulk-alloy decomposition using imaging and spectroscopic techniques at the manometer scale in the transmission electron microscope. CuNiFe alloys were embedded in (0001)-oriented (basal plane) sapphire and (1120)-oriented (prismatic plane) sapphire. Two major orientation relationships were observed: 1111 10CuNiFe&vbm0; &vbm0;00011 100Sapphire 111 110CuNiFe &vbm0;&vbm0;1120 1100Sa pphire ELNES reveals that the sapphire is aluminum-terminated for both orientations. Results show that interface energy can lead to a surface-directed spinodal decomposition mechanism at the alloy-sapphire interface during the early stages of decomposition as a consequence of an interplay between wetting phenomena and the decomposition process. Interface dislocations provide an enhanced diffusion pathway for the breakup of this surface-directed composition wave. Elastic strain fields due to lattice distortions in the alloy also provide an enhanced diffusion mechanism for spinodal decomposition. Suppression of composition modulations in specific crystallographic directions is observed as a result of the dimensional constraint. Evidence suggests that confinement at smaller spatial scales combined with control and manipulation of interface effects can produce a variety of nanoscale, compositionally modulated structures with a desired scale and properties.
机译:在尺寸受限的条件下发生的相变提供了通过结合“向下”制造方法和“向下”自组装过程获得低尺寸,组成调制至纳米级结构的可能性。减少了这种约束,界面和边界表面的影响在系统的整体能量学中起了更主要的作用。本研究研究了界面效应对嵌入在其中的CuNiFe合金的旋节线分解-扩散相变-的影响。惰性蓝宝石主体基质,并在透射电子显微镜的压力计尺度上使用成像和光谱技术,探索了在合金-蓝宝石界面上大块合金分解过程中不可用的扩散路径,将CuNiFe合金嵌入(0001)取向(基面)蓝宝石和(1120)取向(棱柱面)蓝宝石,观察到两个主要的取向关系:1111 10CuNiFe&vbm0; &vbm0; 00011 100蓝宝石111 110CuNiFe&vbm0;&vbm0; 1120 1100Sa pphire ELNES显示蓝宝石在两个方向上均以铝终止。结果表明,由于润湿现象和分解过程之间的相互作用,在分解的早期阶段,界面能可导致合金-蓝宝石界面上的表面定向的旋节线分解机制。界面位错为这种表面定向的成分波的破裂提供了增强的扩散途径。由于合金中晶格畸变而产生的弹性应变场也为旋节线分解提供了增强的扩散机制。由于尺寸限制,观察到了在特定晶体学方向上成分调制的抑制。有证据表明,将空间限制在较小范围内,并结合界面效应的控制和操作,可以产生具有所需尺度和性能的各种纳米尺度,成分调制的结构。

著录项

  • 作者

    McKeown, Joseph Thomas.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 195 p.
  • 总页数 195
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号