首页> 外文学位 >Development of broad spectrum technologies for high energy chirped pulse amplification.
【24h】

Development of broad spectrum technologies for high energy chirped pulse amplification.

机译:用于高能technologies脉冲放大的广谱技术的发展。

获取原文
获取原文并翻译 | 示例

摘要

We have developed several broad-spectrum technologies for high-intensity chirped pulse amplification. We present the design and performance of two 20 TW laser systems. THOR is a Ti:sapphire, 10 Hz, ultra-fast laser that produces femtosecond pulses with a peak intensity of 18.4 TW. The laser operates near the bandwidth limit of the medium maintaining sufficient spectrum to produce 38 fs pulses. This equates to a near transform limited time-bandwidth product of 0.490. The second laser system was developed to study broad-spectrum pulse amplification in mixed Neodymium-doped laser glasses. Our efforts were to produce a multi-Joule laser with sufficient bandwidth to compress near 100 fs using mixed-glasses in the final amplifier. We present the GHOST laser with modeling and experimental analysis of the precise gain ratios between the mixed glasses. GHOST examines the bandwidth limit of the mixed-glass architecture in order to produce the broadest amplified spectrum with the shortest compressed pulsewidth. The laser has a total gain of 4x109 with a net gain of 260 from glass. The measured optimum gain ratio of 3.3 (G phos/Gsil) produced 14.4 nm (FWHM) of bandwidth with a 103 fs pulsewidth. This constitutes a time-bandwidth product of 0.398. Additionally we have investigated two novel laser glasses in an effort to generate high energy (>1 kJ), broad spectrum pulses from a chirped-pulse amplification Nd:glass laser. Both glasses have significantly broader spectra (>38 nm FWHM) than currently available Nd:phosphate and Nd:silicate glasses. We present calculations for small signal pulse amplification to simulate spectral gain narrowing. The technique of spectral shaping using mixed-glass architecture with an optical parametric chirped-pulse amplification front-end is evaluated. Our modeling shows amplified pulses with energies exceeding 10 kJ with sufficient bandwidth to achieve 120 fs pulse widths are achievable with the use of the new laser glasses. With further development of current technologies, a laser system could be scaled to generate one exawatt in peak power. Finally we report controlled enhancement of optical third harmonic generation from hydrodynamically expanding clusters of noble gas atoms several hundred femtoseconds following ionization and heating by ultrashort pump pulses.
机译:我们已经开发了几种用于高强度chi脉冲放大的广谱技术。我们介绍了两个20 TW激光系统的设计和性能。 THOR是10赫兹的Ti:蓝宝石超快激光,其产生的飞秒脉冲的峰值强度为18.4 TW。激光在介质的带宽极限附近工作,保持足够的光谱以产生38 fs脉冲。这等于0.490的近变换受限时间带宽积。开发了第二种激光系统,以研究掺钕混合激光玻璃中的广谱脉冲放大。我们的努力是生产出具有足够带宽的多焦耳激光器,以便在最终放大器中使用混合玻璃将其压缩至接近100 fs。我们用混合玻璃之间精确增益比的建模和实验分析介绍了GHOST激光器。 GHOST检查混合玻璃结构的带宽极限,以产生最宽的放大频谱和最短的压缩脉冲宽度。激光的总增益为4x109,玻璃的净增益为260。测得的最佳增益比为3.3(G phos / Gsil),产生了14.4 nm(FWHM)的带宽,脉冲宽度为103 fs。这构成了0.398的时间带宽积。此外,我们还研究了两种新型激光眼镜,旨在通过from脉冲放大Nd:玻璃激光器产生高能量(> 1 kJ),广谱脉冲。与目前可用的Nd:磷酸盐和Nd:硅酸盐玻璃相比,这两种玻璃的光谱范围都明显更宽(> 38 nm FWHM)。我们提出小信号脉冲放大的计算,以模拟频谱增益变窄。评估了使用带有光学参量chi脉冲放大前端的混合玻璃结构的光谱成形技术。我们的模型表明,使用新的激光眼镜可以实现能量超过10 kJ的放大脉冲,其带宽足以达到120 fs的脉冲宽度。随着当前技术的进一步发展,可以缩放激光系统以产生一瓦的峰值功率。最后,我们报告了在电离并通过超短泵浦脉冲加热几百飞秒之后,从稀有气体原子的流体动力扩展簇中光学可控的三次谐波产生的受控增强。

著录项

  • 作者

    Hays, Gregory Ross.;

  • 作者单位

    The University of Texas at Austin.$bPhysics.;

  • 授予单位 The University of Texas at Austin.$bPhysics.;
  • 学科 Physics Optics.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 237 p.
  • 总页数 237
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 光学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号