首页> 外文学位 >Optimized waveform relaxation methods for circuit simulations.
【24h】

Optimized waveform relaxation methods for circuit simulations.

机译:用于电路仿真的优化波形弛豫方法。

获取原文
获取原文并翻译 | 示例

摘要

Waveform Relaxation methods are very efficient and reliable methods. They have been widely used in several fields, including circuit theory, for solving large systems of ordinary differential equations and solving partial differential equations. A new approach called optimized waveform relaxation algorithms was recently introduced which greatly improved convergence by using new transmission conditions. These conditions are responsible for the exchange of information between subsystems. In this thesis, we demonstrate that the transmission conditions have a tremendous influence on the convergence of the waveform relaxation algorithms for circuit simulations. We first derive new waveform relaxation methods for a general circuit and its associated system of ordinary differential equations, and give transmission conditions with optimal performance. These optimal transmission conditions are however not convenient to use and thus we introduce approximations for them. We then determine numerically the approximate transmission conditions with the best performance of the new waveform relaxation algorithms for two model problems, and we show how much the convergence can be improved compared to the classical waveform relaxation algorithm. We then start a detailed study of optimized waveform relaxation algorithms for RC type circuits. We first analyze RC circuits of any finite size, and give optimal transmission conditions. We again propose approximations for the optimal transmission conditions which are optimized based on numerical insight. Then we choose a very small RC circuit which has only one cell and a small RC circuit which has three cells to further study the quality of the approximations. For the very small RC circuit we show that the optimal transmission conditions are indeed local operators in time, they are first degree time derivatives which are convenient to use. However; we also propose a constant approximation of the optimal transmission conditions which is simpler to use and we prove the optimality of this approximation. For the small RC circuit we also prove the optimality of the proposed constant approximation, and find asymptotically an optimized first order approximation. We then study an infinitely large RC circuit to demonstrate that the size of the circuit does not have a major impact on the convergence of the optimized waveform relaxation methods. We recall the optimality proof for the constant approximation given in [1], and we give an asymptotic result for an optimized first order approximation. We show that results found for the infinitely large RC circuit are indeed limits of those found for the finite size RC circuit as the size of the circuit goes to infinity. We next start a detailed study of optimized waveform relaxation algorithms for transmission line type circuits. We give optimal transmission conditions which we approximate by constants. We analyze very small and small transmission line circuits, which have one cell and two cells respectively, and we find asymptotically optimized constant transmission conditions for both. We consider also an infinitely large transmission line circuit, and we give an optimized constant approximation based on an asymptotic analysis. We finally show that the systems representing the circuits considered are semi-discretizations of particular partial differential equations, and in addition, we show that the new transmission conditions introduced for the circuit problems imply the ones associated with the partial differential equations at the continuous level. We also show that the convergence factors and the solutions obtained by applying the new waveform relaxation algorithms to the partial differential equations converge to those obtained by applying the algorithms to the circuit systems. In order to demonstrate the practicality and the efficiency of the optimized waveform relaxation methods; we give numerical experiments that show the drastically improved convergence beh
机译:波形弛豫方法是非常有效和可靠的方法。它们已广泛用于电路理论等多个领域,用于求解大型常微分方程组和偏微分方程组。最近引入了一种称为优化波形松弛算法的新方法,该方法通过使用新的传输条件极大地改善了收敛性。这些条件负责子系统之间的信息交换。在本文中,我们证明了传输条件对用于电路仿真的波形弛豫算法的收敛性具有极大的影响。我们首先为通用电路及其相关的常微分方程系统推导新的波形松弛方法,并给出具有最佳性能的传输条件。但是,这些最佳传输条件并不方便使用,因此我们为它们引入了近似值。然后,我们用数值确定了新的波形松弛算法在两个模型问题上具有最佳性能的近似传输条件,并显示了与经典波形松弛算法相比可以提高多少收敛性。然后,我们开始详细研究RC型电路的优化波形弛豫算法。我们首先分析任意大小的RC电路,并给出最佳的传输条件。我们再次提出了最佳传输条件的近似值,该近似值是根据数值见解进行优化的。然后,我们选择一个只有一个单元的非常小的RC电路和一个只有三个单元的小的RC电路,以进一步研究近似的质量。对于非常小的RC电路,我们证明最佳的传输条件确实是及时的本地运营商,它们是使用方便的一阶时间导数。然而;我们还提出了一种最优的传输条件的常数近似法,该常数法易于使用,并且证明了这种近似法的最优性。对于小型RC电路,我们还证明了所提出的恒定逼近的最优性,并渐近找到了优化的一阶逼近。然后,我们研究了一个无限大的RC电路,以证明该电路的大小不会对优化波形弛豫方法的收敛产生重大影响。我们回顾了[1]中给出的常数逼近的最优性证明,并且给出了优化的一阶逼近的渐近结果。我们表明,随着电路尺寸达到无穷大,对于无限大的RC电路发现的结果确实是对有限尺寸的RC电路发现的结果的限制。接下来,我们将对传输线型电路的优化波形弛豫算法进行详细研究。我们给出最佳的传输条件,我们可以通过常数来近似。我们分析了非常小的传输线电路,它们分别具有一个单元和两个单元,并且找到了渐近优化的恒定传输条件。我们还考虑了无限大的传输线电路,并基于渐近分析给出了优化的常数近似。最后,我们表明表示所考虑电路的系统是特定偏微分方程的半离散化,此外,我们还表明,针对电路问题引入的新传输条件隐含了与连续级上的偏微分方程相关的条件。我们还表明,通过将新的波形弛豫算法应用于偏微分方程而获得的收敛因子和解与通过将算法应用于电路系统而获得的收敛因子和解决方案收敛。为了证明优化后的波形松弛方法的实用性和有效性;我们给出的数值实验表明,收敛性大大提高

著录项

  • 作者

    Al-Khaleel, Mohammad D.;

  • 作者单位

    McGill University (Canada).;

  • 授予单位 McGill University (Canada).;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 244 p.
  • 总页数 244
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 数学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号