首页> 外文学位 >In situ photopolymerized hydrogels for enhancing protein delivery.
【24h】

In situ photopolymerized hydrogels for enhancing protein delivery.

机译:原位光聚合水凝胶,用于增强蛋白质的递送。

获取原文
获取原文并翻译 | 示例

摘要

In recent years, there has been immense interest in the utilization of photopolymerized hydrogels as carriers for controlled protein delivery and cell scaffolds for tissue engineering applications. Although poly(ethylene glycol) (PEG)-based hydrogels formed from mild photopolymerization methods have been suggested as biocompatible matrices that allow for safely encapsulating biomolecules including proteins, peptides, DNA, and cells, the adverse effects of photopolymerization reactions on the encapsulated proteins have largely been overlooked. In addition, conventional hydrophilic hydrogels fail to effectively control protein delivery rates due to their high permeability. These two problems are critical since the delivery of protein therapeutics from hydrogel matrices in their active form and in optimal rates usually determine whether a device performs successfully in a given application.; The development of ideal hydrogel matrices requires a thorough understanding of protein-polymer interactions and the mechanisms governing protein-delivery rates from a crosslinked polymer network. The primary foci of this dissertation were to evaluate free radical-mediated protein-polymer conjugation and to develop synthetic affinity hydrogels for systematically controlling single and multiple-protein delivery. These research objectives combine the knowledge of protein chemistry, polymer science and engineering, molecular transport kinetics, and mathematical modeling.; The initial research efforts were to evaluate the factors causing protein inactivation during in situ photopolymerization, with the primary focus on photoinitiator chemistry and concentration (Chapter 3). Next, the undesirable formation of protein-polymer conjugates during in situ photopolymerization and their effects on total protein release were investigated (Chapter 3, 4). Once the adverse effects of protein-polymer conjugates were identified, a pseudo-specific metal-ion chelating ligand was used to enhance protein bioavailability (Chapter 4).; Another challenge of using hydrophilic hydrogels for controlled protein delivery is the networks' high permeability to encapsulated proteins. This limitation was circumvented by synthesizing affinity ligands that bind to target proteins and immobilizing them within otherwise inert hydrogel networks (Chapter 5). This modification provided a unique method for tuning the protein delivery rates. Two protein-binding mechanisms, namely electrostatic interaction and metal-ion chelation, were used separately to evaluate the efficacy of protein-ligand binding for controlling protein delivery (Chapter 5, 6). A mathematical model was also developed to predict the release of histidine-tagged protein from metal-chelating ligand imprinted affinity hydrogels (Chapter 5). Finally, these two binding mechanisms were used together in a one-step photopolymerized hydrogel matrix to independently control the delivery rates of two proteins encapsulated simultaneously (Chapter 7).
机译:近年来,人们对利用光聚合水凝胶作为可控制的蛋白质递送载体和组织工程应用的细胞支架的兴趣很大。尽管已经提出了由温和的光聚合方法形成的基于聚乙二醇(PEG)的水凝胶作为生物相容性基质,可以安全地封装生物分子,包括蛋白质,肽,DNA和细胞,但是光聚合反应对封装蛋白质的不利影响却存在在很大程度上被忽略了。另外,常规的亲水性水凝胶由于其高渗透性而不能有效地控制蛋白质的输送速率。这两个问题是至关重要的,因为从水凝胶基质中以其活性形式和最佳速率输送蛋白质治疗剂通常会确定设备在给定应用中是否能成功运行。理想水凝胶基质的开发需要对蛋白质-聚合物相互作用以及控制交联聚合物网络中蛋白质传递速率的机制有透彻的了解。本论文的主要研究目的是评估自由基介导的蛋白质-聚合物结合,并开发合成亲和水凝胶以系统地控制单个和多个蛋白质的传递。这些研究目标结合了蛋白质化学,聚合物科学与工程,分子运输动力学和数学建模的知识。最初的研究工作是评估原位光聚合过程中引起蛋白质失活的因素,主要关注光引发剂的化学性质和浓度(第3章)。接下来,研究了原位光聚合过程中蛋白质-聚合物共轭物的不良形成及其对总蛋白质释放的影响(第3、4章)。一旦确定了蛋白质-聚合物结合物的不利影响,就使用伪特异性金属离子螯合配体来增强蛋白质的生物利用度(第4章)。使用亲水性水凝胶控制蛋白质传递的另一个挑战是网络对封装蛋白质的高渗透性。通过合成与靶蛋白结合的亲和配体并将其固定在其他惰性水凝胶网络中来规避这一限制(第5章)。这种修饰提供了一种独特的方法来调节蛋白质的输送速度。分别使用两种蛋白质结合机制,即静电相互作用和金属离子螯合,来评估蛋白质-配体结合对控制蛋白质递送的功效(第5、6章)。还开发了数学模型来预测金属螯合配体印迹的亲和水凝胶释放组氨酸标签的蛋白质(第5章)。最后,将这两种结合机制一起用于一步式光聚合水凝胶基质中,以独立控制同时包封的两种蛋白质的递送速率(第7章)。

著录项

  • 作者

    Lin, Chien-Chi.;

  • 作者单位

    Clemson University.$bBioengineering.;

  • 授予单位 Clemson University.$bBioengineering.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 337 p.
  • 总页数 337
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号