首页> 外文学位 >Carbon cycling dynamics during succession in sagebrush steppe.
【24h】

Carbon cycling dynamics during succession in sagebrush steppe.

机译:鼠尾草草原演替过程中的碳循环动力学。

获取原文
获取原文并翻译 | 示例

摘要

Fire in big sagebrush (Artemisia tridentata Nutt.) ecosystems is a natural phenomenon and a land management tool that is associated with large releases of carbon dioxide (CO2) to the atmosphere while burning, and potentially large uptake of CO2 from the atmosphere during recovery (succession). Because big sagebrush covers ∼11% of North America, this ecosystem is a potentially important influence on continental-scale carbon cycling. However, little is understood about how the balance between C sources and sinks change as sagebrush ecosystems shift from dominance by herbaceous plants to dominance by big sagebrush shrubs during succession.; Therefore, this study quantified successional changes of both above- and belowground C pools (biomass and soil C) and soil respiration fluxes (R S), and established predictive models of RS using soil gravimetric water content (thetaG) and temperature (T) to help understand mechanisms driving RS. Allometric relationships describing big sagebrush biomass using simple crown measurements provided evidence that simple field measurements may be used to estimate biomass over large regions and that universal scaling rules may be valid for semiarid shrubs. Quantification of belowground C pools suggested that sagebrush ecosystem root biomass does not change during succession after fire (0.43 +/- 0.03 kg m-2 ). Separation of the mineral associated soil C provided evidence that soil is sequestering C during succession and that the largest amount of labile soil C (1.0 +/- 0.33 g C kg soil-1) occurred during the peak of ecosystem productivity when herbaceous and shrub plants were co-dominant. Partitioning soil respiration into heterotrophic (RH, non-root associated) and autotrophic (RA, root-associated) provided strong evidence that RH contributes a greater proportion of the soil CO 2 flux than RA, which is highly variable and depends on plant photosynthetic substrates and successional stage. Regardless of successional stage, RS, RH, and RA responded similarly to environmental drivers, but only when T was > 10°C and theta G was > 10%. Peak C cycling rates, both uptake and release, occurred during co-dominance between herbaceous and shrub species. This study will support future land management decision-making and C cycle modeling at multiple scales for sagebrush ecosystems.
机译:大鼠尾草(Artemisia tridentata Nutt。)生态系统中的火灾是一种自然现象,是一种土地管理工具,与燃烧时向大气中大量释放二氧化碳(CO2)以及恢复期间从大气中大量吸收二氧化碳有关(演替)。由于大山艾树覆盖了北美约11%的土地,因此该生态系统可能对大陆规模的碳循环产生潜在的重要影响。然而,人们几乎不了解碳源和汇之间的平衡如何随着鼠尾草生态系统在演替过程中从草本植物的支配地位转变成大的鼠尾草灌木的支配地位而改变。因此,本研究量化了地上和地下碳库(生物质和土壤碳)和土壤呼吸通量(RS)的连续变化,并利用土壤重量水含量(thetaG)和温度(T)建立了RS的预测模型。了解驱动RS的机制。使用简单的冠冠测量值描述大型鼠尾草生物量的异形关系提供了证据,即简单的现场测量可用于估算大区域的生物量,并且通用缩放规则可能对半干旱灌木有效。地下C池的量化表明,火后演替过程中,山艾树生态系统根系生物量没有变化(0.43 +/- 0.03 kg m-2)。矿物相关土壤C的分离提供了证据,表明土壤在演替过程中被螯合,并且在草木和灌木植物生态系统生产力达到峰值时,不稳定土壤C的量最大(1.0 +/- 0.33 g C kg土壤-1)。是共同的。将土壤呼吸分为异养型(RH,与根系无关)和自养型(RA,与根系相关),提供了有力的证据表明,相对于RA,RH对土壤CO 2通量的贡献更大,而RA高度可变且取决于植物的光合基质和继任阶段。无论演替阶段如何,RS,RH和RA对环境驱动器的响应均相似,但仅当T> 10°C并且theta G> 10%时才有效。草本和灌木物种之间的共存过程中出现了吸收和释放的峰值C循环速率。这项研究将支持未来的鼠尾草生态系统的土地管理决策和碳循环建模。

著录项

  • 作者

    Cleary, Meagan B.;

  • 作者单位

    University of Wyoming.;

  • 授予单位 University of Wyoming.;
  • 学科 Biology Botany.; Biology Ecology.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 153 p.
  • 总页数 153
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 植物学;生态学(生物生态学);
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号