首页> 外文学位 >Glycosaminoglycan stabilization reduces tissue buckling in bioprosthetic heart valves.
【24h】

Glycosaminoglycan stabilization reduces tissue buckling in bioprosthetic heart valves.

机译:糖胺聚糖稳定化可减少生物人工心脏瓣膜中的组织屈曲。

获取原文
获取原文并翻译 | 示例

摘要

Currently, bioprosthetic heart valves are crosslinked with glutaraldehyde to prevent tissue degradation and to reduce tissue antigenicity. Glutaraldehyde forms stable crosslinks with collagen via a Schiff base reaction of the aldehyde with an amine group of the hydroxylysine/lysine in collagen. However, within a decade of implantation, 20-30% of these bioprostheses will become dysfunctional and over 50% will fail due to degeneration within 12-15 years post-operatively [1, 2].;Gylcosaminoglycans, a major constituent of valvular tissue, play an important role in maintaining a hydrated environment necessary for absorbing compressive loads, modulating shear stresses, and resisting tissue buckling. One of the disadvantages of glutaraldehyde crosslinking is its incomplete stabilization of GAGs [3, 4], which lack the amine functionalities necessary for fixation by aldehyde addition. Previous studies have reported a greater depth of buckling in glutaraldehyde crosslinked aortic valves, one of the major causes of failure in these bioprostheses [5, 6]. Buckling occurs at sites of sharp bending, producing large stresses that can eventually lead to mechanical fatigue and consequent valvular degeneration. Local structural collapse occurs at these areas of tissue buckling to minimize compressive stresses, which subsequently causes a reduction in tissue length.;Previous studies have reported the loss of GAGs in glutaraldehyde crosslinked porcine cusps during fixation, storage, in vitro fatigue experimentation, and in vivo subdermal implantation due to enzyme-mediated GAG degradation [3, 4, 7, 8]. Additionally, GAG loss has been observed in failed porcine bioprosthetic heart valves following clinical use [9].;Therefore, to evaluate the potential role of GAGs in reduction of buckling in bioprosthetic heart valves, we used two 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) based crosslinking chemistries that link GAG carboxyl groups to the amine groups of proteins. Neomycin trisulfate, a hyaluronidase inhibitor, was employed to effectively stabilize the GAGs and subsequently prevent its enzymatic degradation. Previously, stabilization of valvular GAGs using neomycin trisulfate, a GAG-enzyme inhibitor, coupled with carbodiimide fixation chemistry was found to resist in vitro and in vivo enzymatic degradation of GAGs [10]. Thus, using the above-mentioned GAG-targeted fixation strategies, we demonstrate that the retention of valvular GAGs reduces the extent of buckling in bioprosthetic heart valves, which may subsequently improve the durability of these bioprostheses.
机译:当前,生物假体心脏瓣膜与戊二醛交联以防止组织降解并降低组织抗原性。戊二醛通过醛与胶原中羟基赖氨酸/赖氨酸的胺基的席夫碱反应,与胶原形成稳定的交联。然而,在植入的十年内,这些生物假体中的20-30%将变得功能失调,并且超过50%的生物假体将在术后12-15年内因变性而退化[1、2] 。;糖胺聚糖,是瓣膜组织的主要成分在维持吸收水分,压缩剪切应力和抵抗组织弯曲所必需的水合环境中起着重要作用。戊二醛交联的缺点之一是GAGs的不完全稳定[3,4],缺乏通过醛加成固定所必需的胺官能团。先前的研究报道了戊二醛交联的主动脉瓣中更大的屈曲深度,这是这些生物假体失败的主要原因之一[5,6]。屈曲发生在急剧弯曲的位置,产生很大的应力,最终可能导致机械疲劳和随之而来的瓣膜退化。局部结构塌陷发生在组织屈曲的这些区域,以最大程度地减小压缩应力,从而导致组织长度减少。;先前的研究报道了戊二醛交联的猪牙尖在固定,储存,体外疲劳实验以及在酶介导的GAG降解导致体内皮下植入[3,4,7,8]。另外,在临床使用后在失败的猪生物人工心脏瓣膜中观察到GAG丢失[9]。因此,为了评估GAG在减少生物人工心脏瓣膜屈曲中的潜在作用,我们使用了两个1-乙基-3-(3 -二甲基氨基丙基)碳二亚胺(EDC)的交联化学,将GAG羧基连接到蛋白质的胺基上。透明质酸酶抑制剂新霉素三硫酸盐用于有效稳定GAG,并随后防止其酶促降解。以前,发现使用新霉素三硫酸盐(一种GAG酶抑制剂)和碳二亚胺固定化学方法来稳定瓣膜GAG可以抵抗GAG的体外和体内酶降解[10]。因此,使用上述针对GAG的固定策略,我们证明了瓣膜GAG的保留减少了生物假体心脏瓣膜的屈曲程度,从而可以提高这些生物假体的耐久性。

著录项

  • 作者

    Shah, Sagar Ramesh.;

  • 作者单位

    Clemson University.;

  • 授予单位 Clemson University.;
  • 学科 Engineering Biomedical.
  • 学位 M.S.
  • 年度 2007
  • 页码 114 p.
  • 总页数 114
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号