首页> 外文学位 >Dynamic Modeling of Inbreathing Requirements for Low-Pressure Storage Tanks.
【24h】

Dynamic Modeling of Inbreathing Requirements for Low-Pressure Storage Tanks.

机译:低压储罐吸气要求的动态建模。

获取原文
获取原文并翻译 | 示例

摘要

Fixed roof storage tanks are known to have a weak resistance to slight vacuum or slight pressure. Typically, the minimum design vacuum is -0.036 psig and the maximum design pressure is 15 psig according to API 620 (12 th Edition, 2013). Because these storage tanks have very thin shelled walls, a slight vacuum can cause tank distortion and failure. Upon a sudden change in weather conditions such as a rainstorm occurring suddenly, atmospheric storage tanks experience thermal inbreathing of ambient air into the tank. If air does not enter rapidly, a pressure drop occurs inside the tank that can lead to tank wall failure by implosion due to negative pressure. Therefore, relief devices must be sized properly based on the maximum inbreathing rate to provide safe venting of the tank.;This study aims at calculating the maximum thermal inbreathing rate by performing dynamic simulations for different tanks using ioMosaic's SuperChems Expert(TM) software. The first objective of this research was comparing the detailed SuperChems Expert(TM) single-phase and two-phase wall dynamics model to existing large scale test data and models. The results were successfully reproduced using this software with error margins between +/- 5%. Previous to this work, the software had not been evaluated for this important modeling.;The second objective was to compare results from the SuperChems-based model against API 2000 (7th Edition, 2014), which is the current standard used for venting atmospheric and low-pressure storage tanks. This work found under a number of scenarios that API 2000 relief equations are considered conservative for non-condensable gas services where the relief device may be overdesigned by up to 60%. However, API 2000 modes fail to predict appropriate relief sizing for tanks storing condensable vapors, such as methanol, and wide-boiling-point mixtures, such as gasoline-ethanol. The relief device capacity can be underestimated by as much as 270% using API 2000. This work recommends adjusting the free-convection heat transfer coefficients according to the vapor type to ensure adequate relief sizing for safe venting.;The third and final objective of this research was to assess the impact of the solar radiation. Solar radiation varies with the geographical location of the tank and impacts the thermal inbreathing and out-breathing. The two locations chosen for this study were Montreal, Canada and Jubail City, Saudi Arabia. Examined were three types of colors for external wall covering with different values of emissivity. Colors examined were: white, aluminum bronze, and black. Rainstorms were simulated at the time of maximum solar flux (i.e. highest tank wall temperature) to create the worst-case scenario and thus the maximum inbreathing rate. Preliminary results for dry air showed that a 600 m3 tank in Saudi Arabia experiences 10% higher inbreathing and 8% higher out-breathing as compared to a tank located in Canada. API 2000 relief calculations were adequate in this case. However, it should be noted that the comparison is for tanks filled with noncondensable dry air only. Future work in this objective is recommended for tanks containing condensable vapors and verification of the maximum inbreathing rates determined at the two locations.
机译:已知固定的屋顶储罐对弱真空或弱压力的抵抗力较弱。通常,根据API 620(2013年第12版),最小设计真空度为-0.036 psig,最大设计压力为15 psig。由于这些储罐的壳壁非常薄,因此,轻微的真空会导致储罐变形和故障。在天气条件突然变化(例如突然发生暴雨)时,大气储罐会经历周围空气的热吸入。如果空气不能迅速进入,则储罐内部会发生压降,由于负压导致内爆,从而导致储罐壁故障。因此,必须根据最大吸气速率来适当设计泄压装置的尺寸,以确保罐的安全通风。本研究旨在通过使用ioMosaic的SuperChems Expert(TM)软件对不同罐进行动态模拟来计算最大热吸气速率。这项研究的首要目的是将详细的SuperChems Expert™单相和两相壁动力学模型与现有的大规模测试数据和模型进行比较。使用该软件成功再现了结果,误差范围在+/- 5%之间。在进行这项工作之前,尚未对该软件进行重要模型的评估。第二个目标是将基于SuperChems的模型与API 2000(第7版,2014年)进行比较,后者是当前用于排放大气和空气的标准。低压储罐。在许多情况下,这项工作发现对于非冷凝性气体服务,API 2000泄压方程被认为是保守的,其中泄压装置可能被过度设计了多达60%。但是,API 2000模式无法预测储藏可冷凝蒸气(例如甲醇)和宽沸点混合物(例如汽油-乙醇)的储罐的合适泄压尺寸。使用API​​ 2000可以将泄压装置的容量低估多达270%。这项工作建议根据蒸汽类型调整自由对流传热系数,以确保适当的泄压尺寸,以确保安全通风。研究是评估太阳辐射的影响。太阳辐射随储罐的地理位置而变化,并会影响热吸入和呼出气体。本研究选择的两个地点是加拿大蒙特利尔和沙特阿拉伯朱拜勒市。检查了三种具有不同发射率值的外墙覆盖物颜色。检查的颜色为:白色,铝青铜和黑色。在最大太阳通量(即最高的罐壁温度)时模拟暴雨,以产生最坏的情况,从而产生最大的吸气率。干燥空气的初步结果表明,与加拿大的一个储罐相比,沙特阿拉伯的600 m3储罐的吸气量高出10%,呼出气量高出8%。在这种情况下,API 2000缓解计算就足够了。但是,应注意的是,该比较仅适用于装有不可凝结的干燥空气的储罐。建议针对包含可冷凝蒸气的储罐并验证这两个位置确定的最大吸气率,对该目标进行进一步的工作。

著录项

  • 作者

    Abou-Chakra, Dona Doureid.;

  • 作者单位

    Northeastern University.;

  • 授予单位 Northeastern University.;
  • 学科 Chemical engineering.
  • 学位 M.S.
  • 年度 2016
  • 页码 128 p.
  • 总页数 128
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号