首页> 外文学位 >Predicting the thermodynamic properties of gold nanoparticles using different force fields.
【24h】

Predicting the thermodynamic properties of gold nanoparticles using different force fields.

机译:使用不同的力场预测金纳米粒子的热力学性质。

获取原文
获取原文并翻译 | 示例

摘要

The objective of this research was to learn how to predict the thermodynamic properties of gold nanoparticles using computational tools. The lowest energy structures of gold nanoparticles of various sizes were determined and thermodynamic properties such as the free energy (F), internal energy (U), entropy (S), and specific heat (Cv) of the gold nanoparticles were investigated using a fully-atomistic Monte Carlo simulation method that utilizes a modified Wang-Landau algorithm. Eight well-known force fields for metallic systems were employed to model gold nanoparticles: the Lennard-Jones potential (LJ), the Lennard-Jones potential with Heinz's parameterization (LJH), the Gupta potential, the Sutton-Chen potential (SC), the Sutton-Chen potential with Pawluk's parameterization for small clusters (SCP), the Quantum Sutton-Chen potential (Q-SC), the Embedded Atom Method (EAM) by Cai and Ye, and the empirical potential for gold proposed by Olivier and coworkers (POT). Subsequently, we explored the accuracy of each force field in the description of the thermodynamic behavior of gold nanoparticles.;The thermodynamic properties of gold nanoparticles were computed from the Density of States which was obtained as a result of the Monte Carlo simulation. Afterwards, the melting point of gold nanoparticles was determined from the behavior of the calculated thermodynamic properties and was compared with theory, experimental observations and other simulation results. The force fields employed predicted melting points of gold nanoparticles over a wide range of temperatures. A thorough comparison with the available experimental observations showed that the Quantum Sutton-Chen potential (Q-SC) correctly described the melting behavior of gold nanoparticles with sizes smaller than 1.3 nanometers.
机译:这项研究的目的是学习如何使用计算工具预测金纳米颗粒的热力学性质。确定了各种尺寸的金纳米颗粒的最低能级结构,并使用完全吸附剂研究了金纳米颗粒的热力学性质,如自由能(F),内能(U),熵(S)和比热(Cv)。 -原子蒙特卡罗模拟方法,利用改进的Wang-Landau算法。八个著名的金属系统力场被用来模拟金纳米粒子:伦纳德·琼斯势能(LJ),带有亨氏参数化的伦纳德·琼斯势能(LJH),古普塔势,萨顿-陈势(SC),带有Pawluk参数化的小团簇的Sutton-Chen势(SCP),Quantum Sutton-Chen势(Q-SC),Cai和Ye的嵌入式原子方法(EAM)以及Olivier及其同事提出的金的经验势(锅)。随后,我们在描述金纳米粒子的热力学行为时探索了每个力场的准确性。;金纳米粒子的热力学性质是通过蒙特卡罗模拟获得的状态密度来计算的。然后,根据计算出的热力学性质确定金纳米颗粒的熔点,并将其与理论,实验观察和其他模拟结果进行比较。使用的力场在很宽的温度范围内预测了金纳米颗粒的熔点。与可用的实验观察结果的彻底比较表明,量子萨顿-陈势(Q-SC)正确地描述了尺寸小于1.3纳米的金纳米颗粒的熔化行为。

著录项

  • 作者

    Park, Yongjin.;

  • 作者单位

    The University of Akron.;

  • 授予单位 The University of Akron.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 157 p.
  • 总页数 157
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号