首页> 外文学位 >Lysosomal release of cathepsins in ischemic brain damage.
【24h】

Lysosomal release of cathepsins in ischemic brain damage.

机译:组织蛋白酶的溶酶体释放在缺血性脑损伤中。

获取原文
获取原文并翻译 | 示例

摘要

Much progress has been made in elucidating the molecular mechanisms that underlie ischemic brain damage, a leading killer in the United States and elsewhere. In many common animal models, a period of ischemia is followed by reperfusion of the affected brain areas. Neuronal death is often delayed until long after reperfusion, and glutamate-dependent increases of intracellular calcium and of reactive oxygen species (ROS) contribute to delayed death. However, the damaging targets of calcium and ROS are not well-established. The goal this thesis was to determine whether lysosomes are damaging targets of these agents following ischemia.; The data presented indicate that lysosomes are permeabilized by calcium and ROS following ischemia. Cathepsin B is a cysteine protease that is normally present in lysosomes, but it accumulates in the cytosol following ischemia in the rat hippocampal slice, probably due to lysosomal membrane permeabilization (LMP). Antioxidants and inhibitors of NMDA-mediated calcium influx block this ischemia-induced accumulation of cathepsin B in the cytosol. Additionally, pharmacological inhibition of cathepsin B and the lysosomal aspartic protease, cathepsin D, attenuates delayed ischemic damage, indicating that these proteases are perpetrators of damage.; The molecular mechanism leading from NMDA-mediated calcium influx to LMP was partially elucidated. Permeabilization depends on activation of cPLA2 (calcium-dependent cytosolic phospholipase A2). Arachidonic acid, but not prostaglandin E2 or superoxide, causes release of acid phosphatase from isolated lysosomes. These results indicate that free arachidonic acid likely causes LMP following ischemia. However, cytosolic accumulation of cathepsin B following ischemia depends on the activity of COX-2 (cyclooxygenase 2), indicating that superoxide or prostaglandins must indirectly contribute to LMP. In a model developed to explain these observations, arachidonic acid causes LMP following ischemia, but other agents, such as superoxide produced by COX-2, contribute by activating cPLA2. Consistent with this model, COX-2 is the major source of superoxide following ischemia. Other enzymes that activate cPLA2 were found to contribute to LMP and to superoxide production, including ERK (extracellular signal-regulated kinase) and nitric oxide synthase. Together, these results indicate that arachidonic acid metabolism downstream of NMDA-mediated calcium influx plays a major role in lysosomal membrane permeabilization following ischemia.
机译:在阐明构成缺血性脑损伤的分子机制方面已经取得了很大进展,而缺血性脑损伤是美国和其他地区的主要杀手。在许多常见的动物模型中,缺血一段时间后会再灌注受影响的大脑区域。神经元死亡通常被延迟到再灌注后很长时间,而谷氨酸依赖的细胞内钙和活性氧(ROS)的增加导致延迟死亡。然而,钙和ROS的破坏性靶标尚不明确。本文的目的是确定溶酶体是否是缺血后这些药物的靶标。所提供的数据表明,局部缺血后钙和ROS可使溶酶体通透。组织蛋白酶B是一种半胱氨酸蛋白酶,通常存在于溶酶体中,但在缺血后大鼠海马切片中会在细胞溶质中蓄积,这可能是由于溶酶体膜通透性(LMP)引起的。抗氧化剂和NMDA介导的钙内流抑制剂可阻止这种缺血诱导的组织蛋白酶B在细胞质中的蓄积。另外,组织蛋白酶B和溶酶体天冬氨酸蛋白酶组织蛋白酶D的药理抑制作用减弱了延迟的局部缺血损伤,表明这些蛋白酶是损伤的肇因者。阐明了从NMDA介导的钙内流到LMP的分子机制。通透性取决于cPLA2(钙依赖性胞质磷脂酶A2)的激活。花生四烯酸,而不是前列腺素E2或超氧化物,引起酸性磷酸酶从分离的溶酶体中释放。这些结果表明,游离花生四烯酸可能在缺血后引起LMP。但是,缺血后组织蛋白酶B的胞质积累取决于COX-2(环氧合酶2)的活性,这表明超氧化物或前列腺素必须间接地促进LMP。在解释这些观察结果的模型中,花生四烯酸引起局部缺血后的LMP,但其他因子(例如COX-2产生的超氧化物)则通过激活cPLA2起作用。与该模型一致,COX-2是缺血后超氧化物的主要来源。发现激活cPLA2的其他酶也有助于LMP和超氧化物的产生,包括ERK(细胞外信号调节激酶)和一氧化氮合酶。总之,这些结果表明,NMDA介导的钙内流下游的花生四烯酸代谢在缺血后的溶酶体膜通透性中起主要作用。

著录项

  • 作者

    Windelborn, James A.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Biology Neuroscience.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 215 p.
  • 总页数 215
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 神经科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号