首页> 外文学位 >Physiochemical investigation of carbon dioxide accelerated concrete curing as a greenhouse gas mitigation technology.
【24h】

Physiochemical investigation of carbon dioxide accelerated concrete curing as a greenhouse gas mitigation technology.

机译:作为温室气体减排技术的二氧化碳促进混凝土固化的理化研究。

获取原文
获取原文并翻译 | 示例

摘要

There is an emerging demand for natural and engineered CO2 sinks to combat the effects of global warming. Carbon capture and storage (CCS) processes are expected to play a predominant role within a broad portfolio of technical innovations to mitigate greenhouse gas (GHG) emissions. A range of CCS methods will be required to provide GHG control technologies for the broad scope of industrial sectors. Within this class of technologies carbon dioxide accelerated concrete curing has the global potential to permanently and safely sequester up to 550 Mt CO2/yr while producing non-reinforced concrete products with improved physical properties and in less time than traditionally cured products. Previous research has exhibited shallow CO 2 penetration depth and modest CO2 uptake in grout and concrete samples despite using severe process conditions such as high pressures, temperatures and long experimental durations. Chemical and microstructural changes during carbonation were investigated to clarify the previously unexplained limitations in CO2 uptake and provide solutions to enhance CO2 storage. Loss of exposed particle surface area was identified as the most significant factor limiting complete carbonation of cement grout samples. The findings were applied to design a bench scale, flow-through carbonation curing reactor that sequestered CO2 at an average of 8.3 wt % of the cured cement with complete depth of penetration. The sequestration results were achieved with ambient temperature (20°C), 40% relative humidity, atmospheric pressure (1 atm), as-captured flue gas CO2 partial pressure (0.20) and low flow (1 Lpm) in less than 60 minutes.
机译:为了应对全球变暖的影响,人们对天然和工程二氧化碳池的需求不断增长。碳捕集与封存(CCS)流程有望在减少温室气体(GHG)排放的广泛技术创新组合中发挥主要作用。为了为广泛的工业领域提供温室气体控制技术,将需要采用多种CCS方法。在此类技术中,二氧化碳加速的混凝土养护具有永久性和安全地封存高达550 Mt CO2 / yr的全球潜力,同时生产的非增强混凝土产品的物理性能和比传统固化产品的时间短。尽管使用了严格的工艺条件(例如高压,高温和较长的实验时间),但先前的研究显示,水泥浆和混凝土样品中的CO 2渗透深度较浅,并且对CO 2的吸收中等。对碳化过程中的化学和微观结构变化进行了研究,以阐明二氧化碳吸收方面以前无法解释的局限性,并提供增强二氧化碳存储的解决方案。暴露颗粒表面积的损失被认为是限制水泥浆样品完全碳化的最重要因素。这些发现被用于设计一个台式规模的流通式碳化固化反应器,该反应器以完全渗透的深度隔离了平均含量为固化水泥的8.3 wt%的CO2。在不到60分钟的时间内,环境温度(20°C),相对湿度40%,大气压力(1 atm),捕获的烟气CO2分压(0.20)和低流量(1 Lpm)达到了螯合结果。

著录项

  • 作者

    Niven, Robert A. J.;

  • 作者单位

    McGill University (Canada).;

  • 授予单位 McGill University (Canada).;
  • 学科 Engineering Civil.
  • 学位 M.Sc.
  • 年度 2006
  • 页码 58 p.
  • 总页数 58
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 建筑科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号