首页> 外文学位 >An experimental and numerical study of the film casting process.
【24h】

An experimental and numerical study of the film casting process.

机译:薄膜浇铸过程的实验和数值研究。

获取原文
获取原文并翻译 | 示例

摘要

Film casting is a common industrial process used to produce polymeric films. During film casting, a polymer melt is extruded through a flat die before rapid cooling on a chill roll. The chill roll velocity is faster than the velocity at which the melt exits the die, thus the polymer melt is stretched and oriented in an extensional flow. The material properties and processing conditions have a significant impact on the process and the final thermal/mechanical properties of the film produced.; Optimization of industrial scale film casting processes is still greatly dependent on trial and error methods. Therefore, this work is motivated primarily by the vision of the Center for Advanced Engineering Fibers and Films (CAEFF) to provide industry partners with computer-aided simulation methods for the design and optimization of future film casting processes.; This work is unique in that it employs an integrated experimental and modeling research approach towards the investigation of the film casting process. Experimentally, we study the film development in the air-gap between the die and the chill roll, and the final film properties. The modeling uses parameters such that the physical conditions under which the film casting experiments are conducted are identical to the experiments. The model inputs are directly derived from the rheological and thermal characterization of the polymeric materials used in the experiments. Therefore, this work provides a comprehensive set of experimental data, coupled with some simulations, which contribute towards a more detailed understanding of the film casting process.; In this work, we experimentally investigate the impact of material properties (such as polymer viscosity) and process conditions (such as die temperature, draw ratio and air-gap length) on the film formation process in the region between the die exit and the chill roll. Experiments are conducted using polypropylene, and a full thermal and rheological characterization of these materials is used both to interpret the experimental results and to provide parameters for the subsequent simulations. The effect of secondary processing steps, such as uniaxial stretching, on film strength, orientation and crystallinity is also studied. Finally, the measured width, temperature and velocity profiles are compared to model predictions.; The machine direction (vx) and transverse direction (vy) velocity components are measured as a function of position in the air-gap. We believe that these are the first pointwise measurements of the vy velocity component in film casting using the LDV technique. The vy velocity component is a result of the film neck-in, and is seen to decrease from the film edges to the centerline. Calculated centerline strain rates are found to depend on the draw ratio due to the effects of the resistance to flow as the film cools near the chill roll and the tension applied to the film as draw ratio is increased.; An increase in the die temperature, or a decrease of the material molecular weight, causes an increase in film neck-in due to the reduced resistance to flow. Increasing the air-gap length also increases the neck-in. This is due to the reduction of the strain rate (Deborah number) as the air-gap length is increased.; Increasing the draw ratio results in an increase in the temperature drop in the air-gap region. This observation is due to improved heat transfer from the film as a result of the decrease in film thickness as draw ratio is increased. Temperature maps show a minimum in the temperature in the central portions of the film, as the chill roll is approached, due to the formation of edge beads at the film edges.; The Primary film samples produced on the take-up roll are found to possess the mesomorphic crystalline morphology of isotactic polypropylene. This is attributed to the quenching action of the chill roll. Increasing the draw ratio slightly increases the crystalline content of the Primary film due to the decrea
机译:膜流延是用于生产聚合物膜的常见工业过程。在薄膜流延过程中,将聚合物熔体通过扁平模挤出,然后在骤冷辊上快速冷却。骤冷辊的速度快于熔体离开模头的速度,因此聚合物熔体在拉伸流中被拉伸和定向。材料性能和加工条件对工艺和所生产薄膜的最终热/机械性能有重大影响。工业规模的薄膜流延工艺的优化仍然很大程度上取决于试错法。因此,这项工作的主要动力是先进工程纤维和薄膜中心(CAEFF)的愿景,即为行业合作伙伴提供计算机辅助的模拟方法,以设计和优化未来的薄膜浇铸工艺。这项工作的独特之处在于,它采用了集成的实验和建模研究方法来研究薄膜浇铸过程。通过实验,我们研究了模具与冷却辊之间气隙中的薄膜显影以及最终的薄膜性能。建模使用的参数应确保进行薄膜浇铸实验的物理条件与实验相同。模型输入直接来自实验中使用的聚合材料的流变学和热学表征。因此,这项工作提供了一套完整的实验数据,并结合了一些模拟,有助于更详细地了解薄膜浇铸过程。在这项工作中,我们通过实验研究了材料特性(例如聚合物粘度)和工艺条件(例如模头温度,拉伸比和气隙长度)对模头出口和冷却之间区域中成膜过程的影响。滚。实验是使用聚丙烯进行的,这些材料的完整热学和流变学特征可用于解释实验结果并为后续模拟提供参数。还研究了诸如单轴拉伸的二次加工步骤对薄膜强度,取向和结晶度的影响。最后,将测得的宽度,温度和速度曲线与模型预测进行比较。机器方向(vx)和横向(vy)速度分量是根据气隙中位置的函数进行测量的。我们相信,这是使用LDV技术在薄膜浇铸中垂直速度分量的逐点测量。视线速度分量是薄膜颈缩的结果,并且可以看到从薄膜边缘到中心线减小。由于薄膜在冷却辊附近冷却时流动阻力的影响以及随着拉伸比的增加施加在薄膜上的张力的影响,计算出的中心线应变率取决于拉伸比。模头温度的升高或材料分子量的降低由于流动阻力的降低而导致薄膜颈缩的增加。气隙长度的增加也会增加缩颈。这是由于随着气隙长度的增加,应变率(Deborah数)减小。拉伸比的增加导致气隙区域中的温度下降增加。该观察结果是由于随着拉伸比的增加而膜厚的减少而改善了从膜的传热。温度图显示,由于在膜边缘形成边缘珠,随着接近冷却辊,膜中心部分的温度最低。发现在卷取辊上生产的初级膜样品具有全同立构聚丙烯的介晶晶体形态。这归因于冷却辊的淬火作用。由于减少,增加拉伸比会稍微增加基本膜的晶体含量

著录项

  • 作者

    Aniunoh, Kenneth Kanayo.;

  • 作者单位

    Clemson University.$bChemical and Biomolecular Engineering.;

  • 授予单位 Clemson University.$bChemical and Biomolecular Engineering.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 237 p.
  • 总页数 237
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化工过程(物理过程及物理化学过程);
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号