首页> 外文学位 >Metagenomics of the Riftia pachyptila symbiont.
【24h】

Metagenomics of the Riftia pachyptila symbiont.

机译:大裂谷共生体的元基因组学。

获取原文
获取原文并翻译 | 示例

摘要

Despite the organisms' relative inaccessibility relative to most biological systems, much has been learned regarding the physiology of the Riftia pachyptila tubeworm and its chemolithoautotrophic symbiont since its discovery a quarter century ago, but many questions regarding the physiology of this association remain unanswered. Since the symbiont is unculturable and all experiments are performed with dying preparations, one molecular option to approach these queries is metagenomics. Metagenomics is inherently difficult, as sequences are derived from an environmental sample rather than a pure monoclonal culture, and the methods used to create the Riftia symbiont metagenome were not optimal for genome closure. However, the symbionts' metagenome provides a wealth of information regarding its physiology. Investigations in this thesis support the theory that trophosome contains a single species, and genomic heterogeneity is very low within the symbiont populations at 9°N. Though sequence fractionation is a problem with the symbiont metagenome, much information has been gathered from it regarding the symbionts' metabolic capabilities. It has been discovered that the symbionts can use the reverse TCA cycle for carbon fixation in addition to the Calvin-Benson Cycle, which explains the discrepancy in the hosts' carbon isotope ratios. The symbionts can also function heterotrophically and have a large suite of signal transduction mechanisms to respond to various environments. It appears as though the host can supply both inorganic and organic carbon to the mixotrophic symbionts, which contain various enzymes to break down host cells. These are the most significant of several new insights the symbiont metagenome has provided us, and a large number of new hypotheses have been proposed as a result.
机译:尽管该生物相对于大多数生物系统而言相对不可及,但自25年前发现以来,关于裂谷裂ift及其化学自养共生体的生理学已学到很多,但是有关该协会的生理学的许多问题仍未得到解答。由于共生体是不可培养的,并且所有实验都是在染快的制剂中进行的,因此应对这些问题的一种分子选择是宏基因组学。元基因组学从本质上讲是困难的,因为序列是从环境样品中获得的,而不是从纯的单克隆培养物中获得的,并且用于创建裂谷共生元基因组的方法对于基因组关闭而言并不是最佳的。但是,共生体的元基因组提供了大量有关其生理学的信息。本文的研究支持这样的理论,即滋养体仅包含一个物种,并且在9°N的共生体种群中基因组异质性非常低。尽管序列分离是共生元基因组的一个问题,但已从中收集到有关共生体代谢能力的许多信息。已经发现,共生体除了可以使用加尔文-本森循环外,还可以使用逆向TCA循环进行碳固定,这可以解释宿主碳同位素比的差异。共生体还可以异养功能,并具有大量的信号转导机制来响应各种环境。看来宿主可以同时向混合营养共生体提供无机碳和有机碳,所述混合营养共生体包含分解宿主细胞的各种酶。这些是共生元基因组为我们提供的一些新见解中最重要的,因此提出了许多新的假设。

著录项

  • 作者

    Robidart, Julie Christine.;

  • 作者单位

    University of California, San Diego.;

  • 授予单位 University of California, San Diego.;
  • 学科 Biology Microbiology.; Biology Oceanography.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 143 p.
  • 总页数 143
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 微生物学;海洋生物;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号