首页> 外文学位 >Multi-scale computational techniques for design of polycrystalline materials.
【24h】

Multi-scale computational techniques for design of polycrystalline materials.

机译:用于多晶材料设计的多尺度计算技术。

获取原文
获取原文并翻译 | 示例

摘要

Microstructures play an important role in controlling distribution of properties in engineering materials. It is possible to develop components with tailored distribution of properties such as strength and stiffness by controlling microstructure evolution during the manufacturing process. When forming metallic components by imposing large deformations, mechanisms such as slip and lattice rotation drive formation of texture in the underlying polycrystalline microstructure. Such microstructural changes affect the final distribution of material properties in the component. By carefully designing the imposed deformation, one could potentially tailor the microstructure and obtain desired property distributions. This thesis focuses on development of novel computational strategies for designing deformation processes to realize materials with desired properties. The techniques presented are an interplay of several new tools developed recently, such as reduced order modeling, graphical cross-plots, statistical learning, microstructure homogenization and multi-scale sensitivity analysis. The primary outcomes of this thesis are listed below: (1) Development of reduced-order representations and graphical methodologies for representing process-property-texture relationships. (2) Development of adaptive reduced-order optimization techniques for identification of processing paths that lead to desirable microstructure-sensitive properties. (3) Development of homogenization techniques for predicting microstructure evolution in large deformation processes. (4) Development of multi-scale sensitivity analysis of poly-crystalline material deformation for optimizing microstructure-sensitive properties during industrial forming processes.; The framework for design of polycrystalline microstructures leads to increased product yield in industrial forming processes and simultaneously allows control distribution of properties such as stiffness and strength in forged products. Multi-scale design problems leading to billions of unknowns have been solved using parallel computing techniques. The computational framework can be readily used for selecting optimal processing paths for achieving desired properties. The methodology developed is a fundamental effort at providing detailed deformation process design solutions needed for controlling properties of performance-critical hardware components in automotive, structural and aerospace applications.
机译:微观结构在控制工程材料的特性分布中起着重要作用。通过控制制造过程中的微观结构演变,可以开发出具有定制的属性分布(例如强度和刚度)的组件。当通过施加较大的变形来形成金属部件时,诸如滑移和晶格旋转的机制会驱动下层多晶微结构中的纹理形成。这种微观结构的变化会影响组件中材料属性的最终分布。通过仔细设计施加的变形,可以潜在地调整微观结构并获得所需的特性分布。本文着重于开发新颖的计算策略,以设计变形过程以实现具有所需特性的材料。展示的技术是最近开发的几种新工具的相互作用,例如降阶建模,图形交叉图,统计学习,微观结构均质化和多尺度敏感性分析。本论文的主要成果如下:(1)提出了用于表示过程-特性-纹理关系的降阶表示和图形方法。 (2)自适应降阶优化技术的发展,用于识别导致所需微结构敏感特性的加工路径。 (3)均质化技术的发展,用于预测大变形过程中的微观结构演变。 (4)开展多尺度多晶材料变形敏感性分析,以优化工业成型过程中的微结构敏感性。用于设计多晶微结构的框架可在工业成型过程中提高产品产量,并同时允许控制锻造产品的特性(如刚度和强度)的分布。使用并行计算技术已经解决了导致数十亿未知数的多尺度设计问题。该计算框架可以容易地用于选择最佳处理路径以实现期望的特性。开发的方法学是提供详细的变形过程设计解决方案的基础性工作,这些解决方案是控制汽车,结构和航空航天应用中性能关键的硬件组件的特性所需的。

著录项

  • 作者单位

    Cornell University.;

  • 授予单位 Cornell University.;
  • 学科 Engineering Mechanical.; Engineering Metallurgy.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 189 p.
  • 总页数 189
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;冶金工业;
  • 关键词

  • 入库时间 2022-08-17 11:40:12

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号