首页> 外文学位 >Electric and microfluidic manipulation of molecules and particles in microfabricated devices.
【24h】

Electric and microfluidic manipulation of molecules and particles in microfabricated devices.

机译:微型设备中分子和颗粒的电和微流体操纵。

获取原文
获取原文并翻译 | 示例

摘要

Microfabrication technology has enabled traditional chemical and biological research to be performed at the micrometer scale, but the control of particles suspended in fluids and the fluids themselves remain a significant challenge. This dissertation is aimed at developing simple and versatile control systems for fluids and small entities (e.g., particles and molecules) in fluids. Accordingly, three methods have been explored using electric and fluidic micromanipulation, as well as physical deposition.; First, dielectrophoretic DNA positioning and elongation in a microchannel have been examined with modified surface chemistry and electrode conditions. Less hydrophilic surfaces provided more controllable stretching, presumably due to the decreased non-specific adsorption of DNA on these surfaces compared to their more hydrophilic counterparts. Smoothed electrode edges allowed more controlled stretching, and, moreover, thin electrodes (50 nm) provided dense electric field and gave -90% success rate of DNA stretching.; Second, a microstencil method has been developed to pattern thermally and chemically sensitive materials. The microstencil has a bi-layer structure comprised of two polymeric films (i.e., parylene and SU8). The parylene layer enables the microstencil to be mechanically peeled from hydrophilic substrates and SU8 provides height to control the amount of material deposited. The amount is also controlled externally by performing multiple spin or dip coating processes. As an initial demonstration of the method, a wide range of chemically and thermally labile materials has been patterned: wax, cells, and proteins.; Third, a continuous synthesis system for anisotropic microparticles with different shapes and sequences has been developed. The anisotropic particles are configured by exploiting a combination of geometrical confinement and microfluidics to pack particles into a narrow, terminal channel, and the packed particles are then bonded by thermal fusing. The width and length of the channels reproducibly specify the configuration of the anisotropic particles that will be produced. Complex sequences are obtained by coupling the sequential actuation of metering lines with the input flow of different particles. By using the process, linear and triangular homogeneous (A) and heterogeneous (A-B and A-B-A) particle chains have been synthesized.
机译:微细加工技术使传统的化学和生物学研究能够在微米级进行,但是控制悬浮在流体中的颗粒以及流体本身仍然是一个巨大的挑战。本文旨在为流体和流体中的小实体(例如,颗粒和分子)开发简单而通用的控制系统。因此,已经探索了使用电和流体微操纵以及物理沉积的三种方法。首先,已经用改良的表面化学和电极条件检查了微通道中介电电泳DNA的定位和延伸。亲水性较低的表面提供了更可控的拉伸,大概是由于与亲水性较高的对应物相比,DNA在这些表面上的非特异性吸附减少了。平滑的电极边缘可以更好地控制拉伸,此外,薄电极(50 nm)提供了密集的电场,DNA拉伸成功率为-90%。其次,已经开发了一种微模板方法来对热敏和化学敏感的材料进行图案化。微模板具有由两个聚合物膜(即聚对二甲苯和SU8)组成的双层结构。聚对二甲苯层使微模板可以从亲水性基材上机械剥离,SU8提供高度以控制沉积的材料量。还可以通过执行多个旋涂或浸涂工艺从外部控制该量。作为该方法的初步证明,已对各种化学和热不稳定的材料进行了图案化:蜡,细胞和蛋白质。第三,已经开发了具有不同形状和序列的各向异性微粒的连续合成系统。通过利用几何限制和微流控技术的组合来配置各向异性粒子,以将粒子堆积到狭窄的终端通道中,然后通过热熔粘合堆积的粒子。通道的宽度和长度可重复地指定将要产生的各向异性颗粒的构型。通过将计量线的顺序驱动与不同颗粒的输入流耦合,可以获得复杂的序列。通过使用该方法,已经合成了线性和三角形的均质(A)和异质(A-B和A-B-A)粒子链。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号