首页> 外文学位 >Mechanisms that control the latitude of jet streams and surface westerlies.
【24h】

Mechanisms that control the latitude of jet streams and surface westerlies.

机译:控制射流和表面西风纬度的机制。

获取原文
获取原文并翻译 | 示例

摘要

Observations and climate models have shown that the extratropical zonal mean zonal winds experience a latitudinal shift with an equivalent barotropic structure from surface westerlies to upper tropospheric jets, in response to several major climate forcings including increasing greenhouse gases, stratospheric ozone depletion, volcanic forcing, and the ENSO (El Nino and Southern Oscillation) cycle. We have performed a number of idealized model experiments to study the mechanisms for these jet movements, using more generic forcings such as changes in surface friction and prescribed zonal torques. Our studies suggest that these jet movements in idealized models and possibly during climate change can be explained by quasi-linear Rossby wave propagation in the upper troposphere and wave activity absorption near the critical latitudes, where the eastward propagation speed of eddies equals the background zonal mean zonal wind.;We further explore the tropospheric jet shift to a prescribed zonal torque in a model with high stratospheric resolution. The jet moves in opposite directions for the torques on the jet's equatorward and poleward flanks in the troposphere. This can be explained by different ways of modifying the critical latitudes of wave activity absorption. However, the jet moves in the same direction for the torque in the extratropical stratosphere irrespective of the latitude of the torque. The stratospheric eddies play the key role in transferring zonal wind anomalies downwards into the troposphere. We argue that these stratospheric zonal wind anomalies can affect the tropospheric jet by altering the eastward propagation of tropospheric eddies.;The tropospheric eddies display a trend towards faster eastward phase speeds in the observations and model simulations for the late 20th century, and in the model projections for the 21st century. We argue that the increased lower stratospheric or upper tropospheric zonal winds, associated with stratospheric ozone depletion or global warming, can be sufficient to increase eddy phase speeds so as to shift the circulation polewards. The trend is very similar in structure to the internal inter-annual variability due to atmospheric eddy-mean flow interactions, rather than the SST-forced variability during the ENSO cycle. This suggests that the observed and simulated shifts of surface westerlies can be more related to the processes associated with the extratropical internal variability such as the variations in the stratospheric polar vortex, rather than those for the tropical-extratropical interactions.;We first vary the strength of surface friction in an idealized dry model of the troposphere. The midlatitude jet is displaced poleward when the surface friction is reduced. If the friction on the zonal mean flow is reduced instantaneously, the response reveals two distinctive adjustment time scales. In the fast adjustment over the first 10--20 days, there is an increase in the barotropic component of zonal winds and a substantial decrease in the eddy kinetic energy; the shift in the surface westerlies and jet latitude occurs in a slower adjustment. The space-time eddy momentum flux spectra suggest that the key to the shift is a poleward movement in the subtropical critical latitude associated with the faster eastward phase speeds in the dominant midlatitude eddies.
机译:观测和气候模型表明,对几种主要气候强迫,包括温室气体增加,平流层臭氧耗竭,火山强迫和ENSO(厄尔尼诺和南方涛动)周期。我们已经执行了许多理想的模型实验,以使用更通用的强迫(例如表面摩擦力的变化和规定的区域扭矩)来研究这些喷气运动的机理。我们的研究表明,理想模式中以及可能在气候变化期间的这些喷流运动可以用对流层上方的准线性Rossby波传播和临界纬度附近的波活动吸收来解释,其中涡流的东传播速度等于背景纬向均值在高平流层分辨率高的模型中,我们进一步探索了对流层射流向规定的纬向扭矩的偏移。射流以相反的方向移动,以获取对流层中射流的赤道和极向侧翼上的扭矩。这可以通过修改波浪活动吸收的临界纬度的不同方式来解释。但是,射流在同温层平流层中沿相同方向移动以产生转矩,而与转矩的纬度无关。平流层涡在将纬向风异常向下转移到对流层中起关键作用。我们认为这些平流层带风异常可以通过改变对流层涡流的向东传播来影响对流层射流;对流层涡流在20世纪后期的观测和模型模拟中以及在模型中显示出向东相速度更快的趋势。 21世纪的预测。我们认为,与平流层臭氧耗竭或全球变暖相关的平流层下部或对流层上部纬向风的增加可能足以增加涡旋相速度,从而使环流向极移。由于大气涡流-均流的相互作用,这种趋势在结构上与内部年际变化非常相似,而不是ENSO周期中由SST强迫的变化。这表明,观测到的和模拟的表面西风的变化可能与与温带内部变率有关的过程(例如平流层极涡的变化)有关,而不是与热带与热带的相互作用有关。理想的对流层干模型中的表面摩擦系数当表面摩擦减小时,中纬度射流向极移。如果在区域平均流量上的摩擦力立即减小,则响应将显示两个不同的调整时间范围。在头10--20天的快速调整中,纬向风的正压分量增加,涡动能显着降低。表面西风的变化和射流纬度的调整较慢。时空涡动量通量谱表明,这一转变的关键是在亚热带临界纬度中向极运动,这与占主导地位的中纬度涡流中更快的东相速度有关。

著录项

  • 作者

    Chen, Gang.;

  • 作者单位

    Princeton University.;

  • 授予单位 Princeton University.;
  • 学科 Atmospheric sciences.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 160 p.
  • 总页数 160
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号