首页> 外文学位 >Using temporal patterns in vapor pressure deficit to explain spatial autocorrelation dynamics in tree transpiration.
【24h】

Using temporal patterns in vapor pressure deficit to explain spatial autocorrelation dynamics in tree transpiration.

机译:使用蒸气压亏空的时间模式来解释树木蒸腾过程中的空间自相关动力学。

获取原文
获取原文并翻译 | 示例

摘要

We measured 120 trees with constant-heat sap flux sensors in a subalpine forest in southern Wyoming, USA to quantify the relationship between temporal and spatial variation in tree transpiration. The forest stand was located along a soil moisture gradient from a stream side to near the top of a ridge. The entire stand was dominated by lodgepole pine ( Pinus contorta Dougl.) with Engelmann spruce (Picea engelmannii Parry) and subalpine fir (Abies lasiocarpa (Hook.) Nut.) present near the stream and scattered individuals of trembling aspen (Populus tremuloides Michx.) throughout the stand. We utilized a cyclic sampling design in space that maximized the number of point pairs at each spatial lag for semivariogram analyses. All four tree species exhibited previously established responses to environmental variables in which the dominant driver was a saturating response to vapor pressure deficit (D). This response to D is predictable from tree hydraulic theory in which stomatal conductance declines as D increases to prevent excessive cavitation. The degree to which stomatal conductance declines with D is dependent on both species and individual tree physiology and increases the variability in transpiration as D increases. We quantified this variability spatially by calculating the spatial autocorrelation within 0.2 kPa D bins. Across 11 bins of D, spatial autocorrelation in individual tree transpiration was inversely correlated to D and dropped from 45 to 20 m. Spatial autocorrelation was much less in transpiration per unit leaf area and not significant in transpiration per unit sapwood area suggesting that spatial autocorrelation within a particular D bin could be explained by tree size. Future research should focus on the mechanisms behind tree size spatial variability, and the potentially broad applicability of the inverse relationship between D and spatial autocorrelation in tree transpiration.
机译:我们在美国怀俄明州南部的亚高山森林中用恒热树汁通量传感器测量了120棵树木,以量化树木蒸腾时空变化之间的关系。林地沿着土壤水分从溪流侧到山脊顶部附近的梯度分布。整个林分以小枝松(Pinus contorta Dougl。)和恩格尔曼云杉(Picea engelmannii Parry)和亚高山冷杉(Abies lasiocarpa(Hook。)Nut。)为主,散布着颤抖的白杨(Populus tremuloides Michx)。 )整个展位。我们利用空间中的循环采样设计,将每个空间滞后点对的数量最大化,以进行半变异函数分析。所有四种树种均表现出对环境变量的先前确定的响应,其中主要驱动因素是对蒸气压不足(D)的饱和响应。这种对D的响应可以从树木的水力理论中预测出来,在该理论中,气孔导度随D的增加而下降,以防止过度的气蚀。气孔导度随D而下降的程度取决于物种和个体树木的生理状况,并随着D的增加而增加蒸腾作用的变异性。我们通过计算0.2 kPa D箱内的空间自相关在空间上对这种可变性进行了量化。在11个D箱中,单个树的蒸腾作用中的空间自相关与D负相关,并从45下降到20 m。空间自相关在每单位叶面积的蒸腾作用上要少得多,而在每单位边材面积的蒸腾作用上却不显着,这表明特定D bin内的空间自相关可以由树的大小来解释。未来的研究应集中在树木大小空间变异性背后的机制上,以及树种蒸腾作用中D与空间自相关之间的逆关系的潜在广泛适用性。

著录项

  • 作者

    Adelman, Jonathan D.;

  • 作者单位

    University of Wyoming.;

  • 授予单位 University of Wyoming.;
  • 学科 Biology Botany.;Remote Sensing.
  • 学位 M.S.
  • 年度 2007
  • 页码 51 p.
  • 总页数 51
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 植物学;遥感技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号