首页> 外文学位 >Geometrical magnetic frustration and demagnetization of artificial spin ice.
【24h】

Geometrical magnetic frustration and demagnetization of artificial spin ice.

机译:人造旋转冰的几何磁性受阻和消磁。

获取原文
获取原文并翻译 | 示例

摘要

Ice is a common material that has unusual properties. The hydrogen ions in ice keep in disordered states even at the extremely low temperatures. Thus ice has the socalled zero point entropy. The disordered states in ice are a consequence of geometrical frustration, a fascinating phenomenon that attracts not only considerable interest in basic physics but also provides a novel platform for important applications, such as data storage and neural networks.; Geometrical frustration also occurs in magnetic materials, in which the geometry of an ordered lattice prohibits simultaneous minimization of all magnetic interactions. Spin ice is a class of geometrically frustrated materials in which the magnetic ions mimic the frustration of hydrogen ion positions in frozen water. However, such chemically synthesized materials put severe limitations on probing the individual magnetic ions and tuning the magnetic interactions.; We used electron beam lithographic patterning to create square arrays of singledomain permalloy (Ni0.8Fe0.2) nanomagnets in which the dipolar interactions displayed two-dimensional frustration analogous to spin ice. Magnetic force microscopic (MFM) images of individual magnetic moments directly displayed the local accommodation of frustration. We saw both ice-like short-range correlations and an absence of long-range correlations, behavior which is strikingly similar to the low-temperature state of spin ice.; The second part of this thesis is about our investigations on demagnetization on the nanometer scale. We studied demagnetization protocols for artificial spin ice by rotating it in a changing magnetic field. To demagnetize the sample, we find that the most effective demagnetization is achieved by not only stepping the field strength down while the sample is rotating, but by combining each field step with an alternation in the field direction. By contrast, linearly decreasing the field strength or stepping the field down without alternating the field direction leaves the arrays with a larger remanent magnetic moment. These results suggest that non-monotonic variations in field magnitude around and below the coercive field are important for the demagnetization process.
机译:冰是一种具有特殊性质的常见材料。即使在极低的温度下,冰中的氢离子也保持无序状态。因此,冰具有所谓的零点熵。冰中的无序状态是几何挫折的结果,这是一种令人着迷的现象,不仅吸引了基础物理学的极大兴趣,而且还为重要应用(例如数据存储和神经网络)提供了新颖的平台。磁性材料中也会发生几何挫折,其中有序晶格的几何形状会阻止所有磁性相互作用的同时最小化。旋转冰是一类几何受挫的材料,其中的磁性离子模仿了冷冻水中氢离子位置的受挫。但是,这种化学合成的材料在探测各个磁性离子和调节磁性相互作用方面有严格的限制。我们使用电子束光刻图案来创建单畴坡莫合金(Ni0.8Fe0.2)纳米磁体的方阵,其中偶极相互作用显示出类似于自旋冰的二维挫折感。单个磁矩的磁力显微镜(MFM)图像直接显示了挫折感的局部适应性。我们既看到了类似冰的短程相关性,也看到了远距相关性的缺失,其行为与旋转冰的低温状态极为相似。本文的第二部分是关于我们对纳米级退磁的研究。我们通过在变化的磁场中旋转人造冰来研究去磁协议。为了使样品退磁,我们发现,最有效的退磁不仅通过降低样品旋转时的磁场强度来实现,而且还通过将每个磁场步长与磁场方向的交替相结合来实现。相比之下,线性减小磁场强度或在不改变磁场方向的情况下逐步减小磁场强度会使阵列具有更大的剩余磁矩。这些结果表明,矫顽磁场周围和下方的磁场强度的非单调变化对于退磁过程很重要。

著录项

  • 作者

    Wang, Ruifang.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Physics Electricity and Magnetism.; Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 146 p.
  • 总页数 146
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号